Preview

Title in english

Advanced search

Promising approaches to ischemic stroke therapy

https://doi.org/10.34680/2076-8052.2024.4(138).573-585

Abstract

The article analyzes data on promising approaches to the treatment of ischemic stroke (IS) presented in peer-reviewed sources indexed in the Pubmed and Russian Science Citation Index databases for the period 2019–2024. It has been demonstrated that the intestinal microbiota enhances neuroprotection through neuronal pathways, suppresses inflammation, and the activity of the hypothalamic-pituitary-adrenal axis. Analysis of the presented data suggests that the intestinal microbiota can serve as a new therapeutic target in the treatment of ischemic stroke. The authors state that melatonin is a promising therapeutic molecule in the treatment of IS. Melatonin is able to inhibit oxidative stress. Melatonin inhibits neuroinflammation in ischemic brain tissue by suppressing the SIRT1 pathway, inhibiting the phenotypic polarization of microglia to M2, and reducing the synthesis of proinflammatory cytokines. The authors noted that melatonin is an active participant in neurogenesis in the ischemic injury zone through activation of MT1 and MT2 receptors, as well as direct activating effect on calmodulin kinase type 2. The analysis reflects the role of stem cells. Stem cells, in particular human neural progenitor cells, are able to restore lost nervous tissue through high neuroregenerative potential, form synaptic connections with intact neurons of the brain. Bone marrow stem cells have a pronounced migration capacity, which allows them to be delivered to the site of ischemic brain damage by intravenous administration; mesenchymal stem cells, in addition to high proliferative potential, modulate neuroinflammation through the synthesis of anti-inflammatory cytokines.

About the Authors

M. V. Osikov
South Ural State Medical University; Chelyabinsk Regional Clinical Hospital
Russian Federation

Chelyabinsk



A. V. Shelomentsev
South Ural State Medical University; Chelyabinsk Regional Clinical Therapeutic Hospital for War Veterans
Russian Federation

Chelyabinsk



Yu. S. Shishkova
South Ural State Medical University
Russian Federation

Chelyabinsk



References

1. Feigin V. L., Brainin M., Norrving B., Martins S., Sacco R. L., Hacke W., Fisher M., Pandian J., Lindsay P. World Stroke Organization (WSO): Global Stroke Fact Sheet 2022 // Internatinal Journal of Stroke. 2022. 17 (1). 18-29. DOI: 10.1177/17474930211065917

2. Ignatyeva V. I., Voznyuk I. A., Shamalov N. A,. Reznik A. V., Vinitskiy A. A,. Derkach E. V. Sotsial'no-ekonomicheskoe bremyainsul'ta v Rossiiskoi Federatsii [Social and economic burden of stroke in Russian Federation] // Journal of Neurology and Psychiatry named after S. S. Korsakov. Special issues. 2023. 123 (8. 2). 5-15. DOI: 10.17116/jnevro20231230825

3. An H., Zhou B,. Ji X. Mitochondrial quality control in acute ischemic stroke // Journal of cerebral blood flow and metabolism: official journal of the International Society of Cerebral Blood Flow and Metabolism. 2021. 41 (12). 3157-3170. DOI: 10.1177/0271678X211046992

4. Cao Y., Yue X., Jia M., Wang J. Neuroinflammation and anti-inflammatory therapy for ischemic stroke // Heliyon. 2023. 9 (2). e17986. DOI: 10.1016/j.heliyon.2023.e17986

5. Candelario-Jalil E., Dijkhuizen R. M,. Magnus T. Neuroinflammation, Stroke, Blood-Brain Barrier Dysfunction, and Imaging Modalities // Stroke. 2022. 53 (5). 1473-1486. DOI: 10.1161/STROKEAHA.122.036946

6. Jayaraj R. L., Azimullah S., Beiram R., Jalal F. Y., Rosenberg G. A. Neuroinflammation: friend and foe for ischemic stroke // Journal of Neuroinflammation. 2019.16 (1).142. DOI: 10.1186/s12974-019-1516-2

7. Paul S., Candelario-Jalil E. Emerging neuroprotective strategies for the treatment of ischemic stroke: An overview of clinical and preclinical studies // Experimental Neurology. 2021. 335 (2). 113518. DOI: 10.1016/j.expneurol.2020.113518

8. Kharitonova T. V., Melo T. P., Andersen G., Egido J. A., Castillo J., Wahlgren N. Importance of cerebral artery recanalization in patients with stroke with and without neurological improvement after intravenous thrombolysis // Stroke. 2013. 44 (9). 2513-2528. DOI: 10.1161/STROKEAHA.111.000048

9. Barthels D., Das H. Current advances in ischemic stroke research and therapies // Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease. 2018. 1866 (4). 165260. DOI: 10.1016/j.bbadis.2018.09.012

10. Zhou G., Wang Y., Gao S,. Fu X., Cao Y., Peng Y., Zhuang J., Hu J., Shao A., Wang L. Potential Mechanisms and Perspectives in Ischemic Stroke Treatment Using Stem Cell Therapies // Frontiers in Cell and Devlopmental Biology. 2021. 9. 646927. DOI: 10.3389/fcell.2021.646927

11. Damasceno P. K. F., de Santana T. A., Santos G. C., Orge I. D., Silva D. N., Albuquerque J. F., Golinelli G., Grisendi G., Pinelli M., Ribeiro dos Santos R., Dominici M., Soares M. B. P. Genetic engineering as a strategy to improve the therapeutic efficacy of mesenchymal stem/stromal cells in regenerative medicine // Frontiers in cell and development biology. 2020. 8. 737-750. DOI: 10.3389/fcell.2020.00737

12. Go V., Bowley B. G. E., Pessina M. A., Zhang Z. G., Chopp M., Finklestein S. P., Rosene D. L., Medalla M., Buller B., Moore T. L. Extracellular vesicles from mesenchymal stem cells reduce microglial-mediated neuroinflammation after cortical injury in aged Rhesus monkeys// Geroscience. 2020. 42 (1). 1-17. DOI: 10.1007/s11357-019-00115-w

13. Rascón-Ramírez F. J., Esteban-García N., Barcia J. A., Trondin A., Nombela C., Sánchez-Sánchez-Rojas L. Are We Ready for Cell Therapy to Treat Stroke? // Frontiers in Cell and Developmental Biology. 2021. 9. 621645. DOI: 10.3389/fcell.2021.621645

14. Honarpisheh P, Bryan R. M., McCullough L. D. Aging Microbiota-Gut-Brain Axis in Stroke Risk and Outcome // Circulation Research. 2022. 130 (8). 1112-1144. DOI: 10.1161/CIRCRESAHA.122.319983

15. Yuan B., Lu X.J., Wu Q. Gut Microbiota and Acute Central Nervous System Injury: A New Target for Therapeutic Intervention // Frontiers in Immunology. 2020. 12. 800796. DOI: 10.3389/fimmu.2021.800796

16. Long J., Wang J., Li Y., Chen S. Gut microbiota in ischemic stroke: Where we stand and challenges ahead // Frontiers in Nutrition. 2022. 9. 008514. DOI: 10.3389/fnut.2022.1008514

17. Wang J., Liu X.,Li Q. Interventional strategies for ischemic stroke based on the modulation of the gut microbiota // Frontiers in Neuroscience. 2023. 17. 1158057. DOI: 10.3389/fnins.2023.1158057

18. Kılıç E., Çağlayan B., Caglar Beker M. Physiological and pharmacological roles of melatonin in the pathophysiological components of cellular injury after ischemic stroke // Turkis Journal of Medical Sciences. 2020. 50 (SI-2). 1655-1664. DOI: 10.3906/sag-2008-32

19. Liu L., Cao Q., Gao W., Li B., Xia Z., Zhao B. Melatonin protects against focal cerebral ischemia-reperfusion injury in diabetic mice by ameliorating mitochondrial impairments: involvement of the Akt-SIRT3-SOD2 signaling pathway // Aging (Albany NY). 2021. 13 (12). 16105-16123. DOI: 10.18632/aging.203137

20. Melatonin mediates mucosal immune cells, microbial metabolism, and rhythm crosstalk: A therapeutic target to reduce intestinal inflammation // Medicine Research Reviews. 2020. 40 (8). 606-632. DOI: 10.1002/med.21628

21. Fülling C., Dinan T. G., Cryan J. F. Gut Microbe to Brain Signaling: What Happens in Vagus… // Neuron. 2019. 101 (6). 998-1002. DOI: 10.1016/j.neuron.2019.02.008

22. Obata Y., Castaño Á., Boeing S., Bon-Frauches A. C., Fung C., Fallesen T., de Agüero M. G., Yilmaz B., Lopes R., Huseynova A., Horswell S., Maradana M. R., Boesmans W., Berghe P. V., Murray A. J., Stockinger B., Macpherson A. J. Vassilis Pachnis V. Neuronal programming by microbiota regulates intestinal physiology // Nature. 2020. 578 (7794). 284-289. DOI: 10.1038/s41586-020-1975-8

23. Rusch J. A., Layden B. T., Dugas L. R. Signalling cognition: the gut microbiota and hypothalamic-pituitary-adrenal axis // Frontiers in Endocrinology. 2023. 14. 1130689. DOI: 10.3389/fendo.2023.1130689

24. Zhang Y., Yang H., Li S., Li W, Wang Y. Consumption of coffee and tea and risk of developing stroke, dementia, and poststroke dementia: A cohort study in the UK Biobank. PLOS // Medicine. 2021. 18 (11). e1003830. DOI: 10.1371/journal.pmed.1003830

25. Ling L., Alattar A., Tan Z., Shah F.A., Ali T., Alshaman R., Koh P.O., Li S. A Potent Antioxidant Endogenous Neurohormone Melatonin, Rescued MCAO by Attenuating Oxidative Stress-Associated Neuroinflammation // Frontiers in Pharmacology. 2020. 21. 1220. DOI: 10.3389/fphar.2020.01220

26. Suofu Y., Jauhari A., Nirmala E. S., Mullins W. A., Wang X., Li F., Carlisle D. L., Friedlander R. M. Neuronal melatonin type 1 receptor overexpression promotes M2 microglia polarization in cerebral ischemia/reperfusion-induced injury // Neuroscience Letters. 2023. 795. 137043. DOI: 10.1016/j.neulet.2022.137043

27. Tozihi M., Shademan B., Yousefi H,. Avci C. B., Nourazarian A., Dehghan G. Melatonin: a promising neuroprotective agent for cerebral ischemia-reperfusion injury // Frontiers in Aging Neuroscience. 2023. 15. 1227513. DOI: 10.3389/fnagi.2023.1227513

28. Liu Z. J., Ran Y. Y., Qie S. Y., Gong W. J., Gao F. H., Ding Z. T., Xi J. N. Melatonin protects against ischemic stroke by modulating microglia/macrophage polarization toward anti-inflammatory phenotype through STAT3 pathway // CNS Neuroscience &Therapeutics. 2019. 25 (12). 1353-1362. DOI: 10.1111/cns.13261

29. Merlo S., Luaces J. P., Spampinato S. F., Toro-Urrego N., Caruso G. I., D'Amico F., Capani F., Sortino M. A. SIRT1 mediates melatonin’s effects on microglial activation in hypoxia: in vitro and in vivo evidence // Biomolecules. 2020. 10 (3). 364. DOI: 10.3390/biom10030364

30. Sadanandan N., Cozene B., Cho J., Park Y. J., Saft M,. Gonzales-Portillo B,. Borlongan C. V. Melatonin-A Potent Therapeutic for Stroke and Stroke-Related Dementia // Antioxidants (Basel). 2020. (8). 672. DOI: 10.3390/antiox9080672

31. Wongprayoon P., Govitrapong P. Melatonin receptor as a drug target for neuroprotection // Current Molecular Pharmacology. 2020. 14 (2). 150-164. DOI: 10.2174/1874467213666200421160835

32. Spellicy S. E., Stice, S. L. Tissue and stem cell sourced extracellular vesicle communications with microglia // Stem Cell Reviews and Reports. 2020. 17 (2). 357-368. DOI: 10.1007/s12015-020-10011-y

33. Hatakeyama M., Ninomiya I., Otsu Y., Omae K., Kimura Y., Onodera O., Fukushima M., Shimohata T., Kanazawa M. Cell therapies under clinical trials and polarized cell therapies in pre-clinical studies to treat ischemic stroke and neurological diseases: a literature review // International Journal of Molecular Sciences. 2020. 21 (17). 6194. DOI: 10.3390/ijms21176194

34. Sotomayor-Sobrino M. A., Ochoa-Aguila, A., Méndez-Cuest L. A., Gómez-Acevedo C. Neuroimmunological interactions in stroke // Neurologia. 2019. 34 (5). 326-335. DOI: 10.1016/j.nrl.2016.08.003


Review

For citations:


Osikov M.V., Shelomentsev A.V., Shishkova Yu.S. Promising approaches to ischemic stroke therapy. Title in english. 2024;(4(138)):573-585. (In Russ.) https://doi.org/10.34680/2076-8052.2024.4(138).573-585

Views: 21


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2076-8052 (Print)