Preview

Title in english

Advanced search

Characteristics of mediators and modulators, their biological role in the functioning of the nervous system

https://doi.org/10.34680/2076-8052.2021.1(122).6-14

Abstract

Mediator substances in the nervous system are divided into two large groups neurotransmitters, which carry out signal transmission at the synapse, and neuromodulators, which regulate signal transmission. Neurotransmitters are divided into amino acids (glycine, glutamate and aspartate) and biogenic amines. Neuromodulators, in turn, are subdivided into four large groups: neuropeptides (endorphin, met-enkephalin, calcitonin, substance P), derivatives of fatty acids (eicosanoids and arachidonic acid), purines and pyrimidines (extracellular ATP, ADP, adenine) and gaseous substances (NO, CO and H2S). Neuromodulators, in comparison with neurotransmitters, do not have an independent physiological effect, but modify their effect, their action has a tonic character. The target of a neuromodulator can be not only the postsynaptic membrane and not only membrane receptors. It acts on different parts of the neuron, and its action can be intracellular. Systems of neurotransmitters and neuromodulators play an important role in the functioning of the nervous system and the body as a whole. The study of their functioning and regulation can serve as a fundamental basis for the study of the brain in normal and experimental pathology, creating a basis for the subsequent extrapolation of the obtained data to humans.

About the Author

E. I. Bon
Grodno State Medical University
Belarus

Grodno



References

1. Hyman S.E. Neurotransmitters. Curr Biol. 2005, vol. 15(5), pp. 154-158.

2. Vogt N. Sensing neurotransmitters. Nat Methods. 2019, vol. 16(1), pp. 17-22.

3. Polo E., Kruss S. Nanosensors for neurotransmitters. Anal Bioanal Chem. 2016, vol. 408, pp. 2727-2741.

4. Bucher E.S., Wightman R.M. Electrochemical Analysis of Neurotransmitters. Annu Rev Anal Chem. 2015, vol. 8, pp. 239-261.

5. Rand J.B. Acetylcholine. WormBook. 2007, vol.30, pp. 1-21.

6. Picciotto M.R., Higley M.J., Mineur Y.S. Acetylcholine as a neuromodulator: cholinergic signaling shapes nervous system function and behavior. Neuron. 2012, vol. 6(1), pp. 116-129.

7. Vogt N. Detecting acetylcholine. Nat Methods. 2018, vol. 15(9), pp. 648-653.

8. Chen J., Cheuk I.W.Y., Shin V.Y., Kwong A. Acetylcholine receptors: Key players in cancer development. Surg Oncol. 2019, vol. 31, pp. 46-53.

9. Jorgensen E.M. GABA. WormBook. 2005, vol.31, pp. 113.

10. Spiering M.J. The discovery of GABA in the brain. J Biol Chem. 2018, vol. 293(49), pp. 19159-19160.

11. Roth F.C., Draguhn A. GABA metabolism and transport: effects on synaptic efficacy. Neural Plast. 2012, v.12, pp.80-85.

12. Stefanic P., Dolenc M.S. Aspartate and glutamate mimetic structures in biologically active compounds. Curr Med Chem. 2004, vol. 11(8), pp. 945-968.

13. Rao T.S., Lariosa-Willingham K.D., Yu N. Glutamatedependent glutamine, aspartate and serine release from rat cortical glial cell cultures. Brain Res. 2003, v.978(1-2), p.213222.

14. Yeboah F., Guo H., Bill A. A High-throughput Calcium-flux Assay to Study NMDA-receptors with Sensitivity to Glycine/Dserine and Glutamate. J Vis Exp. 2018, v.137, p.58-60.

15. Dremencov E., el Mansari M., Blier P. Brain norepinephrine system as a target for antidepressant and mood stabilizing medications. Curr Drug Targets. 2009, v.10(11), pp.1061-1068.

16. Yadav T., Mukherjee V. Structural confirmation and spectroscopic study of a biomolecule: Norepinephrine. Spectrochim Acta A Mol Biomol Spectrosc. 2018, vol. 202, pp. 222-237.

17. Berke J.D. What does dopamine mean? Nat Neurosci. 2018, vol. 21(6), pp. 787-793.

18. Schultz W. Multiple dopamine functions at different time courses. Annu Rev. Neurosci., 2007, vol. 30, pp. 259-88.

19. Mohammad-Zadeh L.F., Moses L., Gwaltney-Brant S.M. Serotonin: a review. J Vet Pharmacol Ther. 2008, vol. 31(3), pp. 187-199.

20. Berger M., Gray J.A., Roth B.L. The expanded biology of serotonin. Annu Rev Med., 2009, vol. 60, pp. 355-366.

21. Lieberman P. The basics of histamine biology. Ann Allergy Asthma Immunol. 2011, vol. 106, pp. 2-5.

22. Pertz H.H., Elz S., Schunack W. Structure-activity relationships of histamine H1-receptor agonists. Mini Rev Med Chem. 2004, vol. 4(9), pp. 935-940.

23. Thiele T.E. Neuropeptides and Addiction: An Introduction. Int Rev Neurobiol. 2017, vol. 136, pp. 1-3.

24. Li C., Kim K. Neuropeptides. WormBook. 2008, v.25, pp.1-36.

25. Hökfelt T., Pernow B., Wahren J. Substance P: a pioneer amongst neuropeptides. J Intern Med. 2001, vol.249(1), pp.27-40.

26. Nederpelt I., Bleeker D., Tuijt B., IJzerman A.P., Heitman L.H. Kinetic binding and activation profiles of endogenous tachykinins targeting the NK1 receptor. Biochem Pharmacol. 2016, vol. 118, pp. 88-95.

27. Remesic M., Lee Y.S., Hruby V.J. Cyclic Opioid Peptides. Curr Med Chem. 2016, vol. 23(13). pp. 1288-1303.

28. Gomes I., Sierra S., Lueptow L., Gupta A., Gouty S., Margolis E.B., Cox B.M., Devi L.A. Biased signaling by endogenous opioid peptides. Proc Natl Acad Sci U S A. 2020, vol. 117(21), pp. 11820-11828.

29. Wu Z., Autry A.E., Bergan J.F., Watabe-Uchida M., Dulac C.G. Galanin neurons in the medial preoptic area govern parental behavior. Nature. 2014, vol. 509, pp. 325-330.

30. Kimura K., Shimosegawa T. Neurotensin. Nihon Rinsho. 2005, vol. 8, pp. 244-247.

31. Kautz M., Charney D.S., Murrough J.W. Neuropeptide Y, resilience, and PTSD therapeutics. Neurosci Lett. 2017, vol. 649, pp. 164-169.

32. Chhonker Y.S., Bala V., Murry D.J. Quantification of eicosanoids and their metabolites in biological matrices: a review. Bioanalysis. 2018, vol. 10(24), pp. 2027-2046.

33. Scherma M., Masia P., Satta V., Fratta W., Fadda P., Tanda G. Brain activity of anandamide: a rewarding bliss? Acta Pharmacol Sin. 2019, vol. 40(3), pp. 309-323.

34. Hоyland-Kroghsbo N.M. Cyclic Nucleotide Signaling: A Second Messenger of Death. Cell Host Microbe. 2019, vol.26(5), pp. 567-568.

35. de Araújo S., Oliveira A.P., Sousa F.B.M., Souza L.K.M., Pacheco G., Filgueiras M.C., Nicolau L.A.D. AMPK activation promotes gastroprotection through mutual interaction with the gaseous mediators H2S, NO, and CO. Nitric Oxide. 2018, vol. 78, pp. 60-71.


Review

For citations:


Bon E.I. Characteristics of mediators and modulators, their biological role in the functioning of the nervous system. Title in english. 2021;(1(122)):6-14. (In Russ.) https://doi.org/10.34680/2076-8052.2021.1(122).6-14

Views: 40


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2076-8052 (Print)