Preview

Title in english

Advanced search

Classical relativistic dynamics of a system of interacting particles

https://doi.org/10.34680/2076-8052.2023.1(130).34-46

Abstract

A method is proposed for the relativistic description of the dynamics of systems of particles interacting through an auxiliary field which in the static mode is equivalent to given interatomic potentials, and in the dynamic mode is a classical relativistic field. It has been established that for static interatomic potentials, the Fourier transform of which is a rational algebraic function of the wave vector, the auxiliary field is a composition of elementary fields, each of which satisfies the Klein-Gordon equation, which is generally characterized by a complex mass. The interaction between particles through an auxiliary field is nonlocal both in space variables and in time (interaction retardation effect). A qualitative analysis of the relativistic dynamics of the simplest few-particle systems with retarded interaction has been carried out. The relativistic mechanisms of both thermodynamic behavior and synergetic effects in few-body systems have been established.

About the Author

A. Yu. Zakharov
Yaroslav-the-Wise Novgorod State University
Russian Federation

Zakharov A. Yu.,

Veliky Novgorod.



References

1. Currie D. G. Interaction contra classical relativistic Hamiltonian particle mechanics // J. Math. Phys. 1963. 4(12).1470-1488.

2. Currie D. G., Jordan T. F., Sudarshan E. C. G. Relativistic invariance and Hamiltonian theories of interacting particles // Rev. Mod. Phys. 1963. 35(2). 350-375.

3. Leutwyler H. // Nuovo Cimento. 1965. 37(2). 556-567.

4. Landau L. D., Lifshitz E. M. Teoriya polya [Field theory]. Moscow, Nauka Publ., 1988.

5. Synge J. L. Relativity: The Special Theory. Amsterdam, North Holland, 1956. 450 p.

6. Kosyakov B. P. Introduction to the Classical Theory of Particles and Fields. Berlin, Springer, 2007.

7. Uchaikin V. V. On time-fractional representation of an open system response // Fract. Calc. Appl. Anal. 2016. 19.1306-1315. DOI: 10.1515/fca-2016-0068

8. Lamb H. On a Peculiarity of the Wave-System due to the Free Vibrations of a Nucleus in an Extended Medium // Proc. Lond. Math. Soc. 1900. s1-32. 208-211. DOI: 10.1112/PLMS/S1-32.1.208

9. Love A. E. H. Some Illustrations of Modes of Decay of Vibratory Motions // Proc. Lond. Math. Soc. 1905. s2-2. 88-113.

10. Synge J. L. The Electromagnetic Two-Body Problem // Proc. Roy. Soc. A. 1940. 177. 118-139. DOI: 10.1098/rspa.1940.0114

11. Driver R. D. A Two-Body Problem of Classical Electrodynamics: The One-Dimensional Case // Annals of Physics. 1963. 21(1).122-142. DOI: 10.1016/0003-4916(63)90227-6

12. Hsing D. K. Existence and Uniqueness Theorem for the One-Dimensional Backwards Two-Body Problem of Electrodynamics // Phys. Rev. D. 1977. 16. 974-982. DOI: 10.1103/PhysRevD.16.974

13. Hoag J. T., Driver R. D. A Delayed-Advanced Model for the Electrodynamics Two-Body Problem // Nonlinear Anal. Theory Methods Appl. 1990. 15. 165-184.

14. Zakharov A. Yu. On Physical Principles and Mathematical Mechanisms of the Phenomenon of Irreversibility // Physica A: Statistical Mechanics and its Applications. 2019. 525. 1289-1295. DOI: 10.1016/j.physa.2019.04.047

15. Zakharov A. Y., Zakharov M. A. Microscopic Dynamic Mechanism of Irreversible Thermodynamic Equilibration of Crystals // Quantum Reports. 2021. 3. 724-730. DOI: 10.3390/quantum3040045

16. Zakharov A. Y., Zubkov V. V. Field-Theoretical Representation of Interactions between Particles: Classical Relativistic Probability-Free Kinetic Theory // Universe. 2022. 8(281). 1-11. DOI: 10.3390/universe8050281

17. Lorenz L. On the identity of the vibrations of light with electrical currents // Philos. Mag. 1867. 34. 287-301. DOI: 10.1080/14786446708639882

18. Riemann B. A contribution to electrodynamics // Philos. Mag. Ser. 1867. 34. 368-372. DOI: 10.1007/978-3-319-60039-0_3

19. Morse P. M., Feshbach H. Methods of Theoretical Physics. New York, McGraw-Hill, 1953.

20. Ivanenko D. D., Sokolov A. A. Klassicheskaya teoriya polya [Classical field theory]. Moscow, GITTL Publ., 1949. 432 p.


Review

For citations:


Zakharov A.Yu. Classical relativistic dynamics of a system of interacting particles. Title in english. 2023;(1(130)):34-46. (In Russ.) https://doi.org/10.34680/2076-8052.2023.1(130).34-46

Views: 44


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2076-8052 (Print)