Preview

Title in english

Advanced search

The role of genetic polymorphisms of hemostasis factors in the pathogenesis and prognosis of sepsis (review)

https://doi.org/10.34680/2076-8052.2024.2(136).230-246

Abstract

Sepsis is a typical form of pathology, which is based on the body's reaction in the form of generalized inflammation to an infection of various nature, leading to acute multiple organ dysfunction. In sepsis, endothelial dysfunction, platelet adhesion and aggregation, hypercoagulation, hypocoagulation occur, microthrombogenesis, disturbances in the anticoagulant and fibrinolytic systems increase. Only a few studies have assessed the relationship of single nucleotide polymorphisms (SNPs) of hemostatic factors in the prognosis of sepsis: VWF, EPCR, SELP, SELE, ITGA2, ITGA2b, ITGB3, GP1BA, FGG, FGA, FII, FV, FVII, THBD, PAI-1. The disparity of the SNP results highlights the need for larger-scale studies within the framework of a personalized approach to complement the theoretical basis of the pathogenesis of sepsis, as well as to obtain new laboratory tools to improve prognostic scales, the formation of a mathematical model depending on the outcome of sepsis.

About the Authors

M. V. Osikov
South Ural State Medical University; Chelyabinsk Regional Clinical Hospital
Russian Federation

Chelyabinsk



L. F. Telesheva
South Ural State Medical University
Russian Federation

Chelyabinsk



A. G. Konashov
South Ural State Medical University; City Clinical Hospital No. 8
Russian Federation

Chelyabinsk



A. V. Gusev
South Ural State Medical University; Chelyabinsk Regional Clinical Hospital
Russian Federation

Chelyabinsk



V. A. Konashov
South Ural State Medical University; City Clinical Hospital No. 8
Russian Federation

Chelyabinsk



M. A. Zotova
South Ural State Medical University
Russian Federation

Chelyabinsk



References

1. Singer M., Deutschman C. S., Seymour C. W., Shankar-Hari M., Annane D., Bauer M., Bellomo R., Bernard G. R., Chiche J. D., Coopersmith C. M., Hotchkiss R. S., Levy M. M., Marshall J. C., Martin G. S., Opal S. M., Rubenfeld G. D., van der Poll T., Vincent J. L., Angus D. C. The Third International Consensus defnitions for sepsis and septic shock (Sepsis-3) // Journal of the American Medical Association (JAMA). 2016. 315(8). 801-810. DOI: 10.1001/jama.2016.0287

2. Giustozzi M., Ehrlinder H., Bongiovanni D., Borovac J. A., Guerreiro R. A., Gąsecka A., Papakonstantinou P. E., Parker W. A. E. Coagulopathy and sepsis: Pathophysiology, clinical manifestations and treatment // Blood Revieews. 2021. 50. 100864. DOI: 10.1016/j.blre.2021.100864

3. Sungurlu S., Kuppy J., Balk R. A. Role of Antithrombin III and Tissue Factor Pathway in the Pathogenesis of Sepsis // Critical Care Clinics. 2020. 36(2). 255-265. DOI: 10.1016/j.ccc.2019.12.002

4. Lu H., Wen D., Wang X., Gan L., Du J., Sun J., Zeng L., Jiang J., Zhang A. Host genetic variants in sepsis risk: A field synopsis and meta-analysis // Crit Care. 2019. 26. DOI: 10.1186/s13054-019-2313-0

5. Chen Y., Hu Y., Song Z. The association between interleukin-6 gene -174G/C single nucleotide polymorphism and sepsis: an updated meta-analysis with trial sequential analysis // BMC Medical Genetics. 2019. 20(1). 35. DOI: 10.1186/s12881-019-0766-2

6. Georgescu A. M., Banescu C., Azamfirei R., Hutanu A., Moldovan V., Badea I., Voidazan S., Dobreanu M., Chirtes I. R., Azamfirei L. Evaluation of TNF-α genetic polymorphisms as predictors for sepsis susceptibility and progression // BMC Infectious Diseases. 2020. 20(1). 221. DOI: 10.1186/s12879-020-4910-6

7. Chang J. C. Sepsis and septic shock: endothelial molecular pathogenesis associated with vascular microthrombotic disease // Thrombosis Journal. 2019. 17. 10-29. DOI: 10.1186/s12959-019-0198-4

8. Joffre J., Hellman J., Ince C., Ait-Oufella H. Endothelial Responses in Sepsis // American Journal of Respiratory and Critical Care Medicine. 2020. 202(3). 361-370. DOI: 10.1164/rccm.201910-1911TR

9. Neubauer K., Zieger B. Endothelial cells and coagulation // Cell and Tissue Research. 2022. 387(3). 391-398. DOI: 10.1007/s00441-021-03471-2

10. Cox D. Sepsis – it is all about the platelets // Frontiers in Immunology. 2023. 14. 1210219. DOI: 10.3389/fimmu.2023.1210219

11. Sharma S., Tyagi T., Antoniak S. Platelet in thrombo-inflammation: unraveling new therapeutic targets // Frontiers in Immunology. 2022. 13. 1039843. DOI: 10.3389/fimmu.2022.1039843

12. Stark K., Massberg S. Interplay between inflammation and thrombosis in cardiovascular pathology // Nature Reviews Cardiology. 2021. 18(9). 666-682. DOI: 10.1038/s41569-021-00552-1

13. Zaid Y., Merhi Y. Implication of platelets in immuno-thrombosis and thromboinflammation // Frontiers in Cardiovascular Medicine. 2022. 9. 863846. DOI: 10.3389/fcvm.2022.863846

14. Su M., Chen C., Li S., Li M., Zeng Z., Zhang Y., Xia L., Li X., Zheng D., Lin Q., Fan X., Wen Y., Liu Y., Chen F., Luo W., Bu Y., Qin J., Guo M., Qiu M., Sun L., Liu R., Wang P., Hwa J., Tang W. H. Gasdermin d-dependent platelet pyroptosis exacerbates NET formation and inflammation in severe sepsis // Nature Cardiovascular Research. 2022. 1(8). 732-747. DOI: 10.1038/s44161-022-00108-7

15. Su Y., Zhang T., Qiao R. Pyroptosis in platelets: thrombocytopenia and inflammation // Journal of Clinical Laboratory Analysis. 2023. 37(4). e24852. DOI: 10.1002/jcla.24852

16. Patel P., Michael J. V., Naik U. P., McKenzie S. E. Platelet FcgRIIA in immunity and thrombosis: adaptive immunothrombosis // Journal of Thrombosis and Haemostasis. 2021. 19(5). 1149-1160. DOI: 10.1111/jth.15265

17. Hally K., Fauteux-Daniel S., Hamzeh-Cognasse H., Larsen P., Cognasse F. Revisiting platelets and toll-like receptors (TLRs): At the interface of vascular immunity and thrombosis // International Journal of Molecular Sciences. 2020. 21(17). 6150. DOI: 10.3390/ijms21176150

18. Ebermeyer T., Cognasse F., Berthelot P., Mismetti P., Garraud O., HamzehCognasse H. Platelet innate immune receptors and TLRs: a double-edged sword // International Journal of Molecular Sciences 2021. 22(15). 7894. DOI: 10.3390/ijms22157894

19. Dib P. R. B., Quirino-Teixeira A. C., Merij L. B., Mendonça Pinheiro M. B., Rozini S. V., Andrade F. B., Hottz E. D. Innate immune receptors in platelets and platelet-leukocyte interactions // Journal of Leukocyte Biology. 2020. 108(4). 1157-1182. DOI: 10.1002/JLB.4MR0620-701R

20. Oyarzún M. C. P., Glembotsky A. C., Goette N. P., Lev P. R., De Luca G., Pietto B. M. C., Moiraghi B., Ríos C. M. A., Vicente A., Marta R. F., Schattner M., Heller P. G. Platelet toll-like receptors mediate thromboinflammatory responses in patients with essential thrombocythemia // Frontiers in Immunology. 2020. 11. 705. DOI: 10.3389/fimmu.2020.00705

21. Huang J., Li X., Shi X., Zhu M., Wang J., Huang S., Huang X., Wang H., Li L., Deng H., Zhou Y., Mao J., Long Z., Ma Z., Ye W., Pan J., Xi X., Jin J. Platelet integrin αIIbβ3: signal transduction, regulation, and its therapeutic targeting // Journal of Hematology and Oncology. 2019. 12(1). 26. DOI: 10.1186/s13045-019-0709-6

22. Osikov M. V., Antonov V. N., Zotov S. O., Chulkov V. S. Rol' polimorfizma genov F2, F5, FGB i PAI-1 v izmenenii gemostaza u bol'nykh s COVID-19-assotsiirovannym porazheniyem legkikh [Role of F2, F5, FGB, and PAI-1 gene polymorphisms in changes of hemostasis in patients with COVID-19-associated lung injury] // Patologicheskaya Fiziologiya i Eksperimentalnaya terapiya. (Pathological Physiology and Experimental Therapy, Russian Journal). 2023. 67(2). DOI: 10.25557/0031-2991.2023.02.33-41

23. Scozzi D., Liao F., Krupnick A. S., Kreisel D., Gelman A. E. The role of neutrophil extracellular traps in acute lung injury // Frontiers in Immunology. 2022. 13. 953195. DOI: 10.3389/fimmu.2022.953195

24. Zhang H., Wang Y., Qu M., Li W., Wu D., Cata J. P., Miao C. Neutrophil, neutrophil extracellular traps and endothelial cell dysfunction in sepsis // Clinical and Translational Medicine. 2023. 13(1). e1170. DOI: 10.1002/ctm2.1170

25. Iba T., Levy J. H., Raj A., Warkentin T. E. Advance in the management of sepsis induced coagulopathy and disseminated intravascular coagulation // Journal of Clinical Medicine. 2019. 8(5). 728. DOI: 10.3390/jcm8050728

26. Elek Z., Losoncz E., Maricza K., Fülep Z., Bánlaki Z., Kovács-Nagy R., Keszler G., Rónai Z. Missense Variants of von Willebrand Factor in the Background of COVID-19 Associated Coagulopathy // Genes. 2023. 14(3). 617. DOI: 10.3390/genes14030617

27. Liang Y., Huang X., Jiang Y., Qin Y., Peng D., Huang Y., Li J., Sooranna S. R., Pinhu L. Endothelial protein C receptor polymorphisms and risk of sepsis in a Chinese population // Journal of International Medical Research (JIMR). 2017. 45(2). 504-513. DOI: 10.1177/0300060516686496

28. Purdy M., Obi A., Myers D., Wakefield T. P- and E- selectin in venous thrombosis and non-venous pathologies // Journal of Thrombosis and Haemostasis. 2022. 20(5). 1056-1066. DOI: 10.1111/jth.15689

29. Ding G., Wang J., Liu K., Huang B., Deng W., He T. Association of E-Selectin gene rs5361 polymorphism with ischemic stroke susceptibility: a systematic review and Meta-analysis // International Journal of Neuroscience. 2021. 131(5). 511-517. DOI: 10.1080/00207454.2020.1750385

30. Jiang J., Li W., Zhou L., Liu D., Wang Y., An J., Qiao S., Xie Z. Platelet ITGA2B inhibits caspase-8 and Rip3/Mlkl-dependent platelet death though PTPN6 during sepsis // iScience. 2023. 26(8). 107414. DOI: 10.1016/j.isci.2023.107414

31. Middleton E. A., Rowley J. W., Campbell R. A., Grissom C. K., Brown S. M., Beesley S. J., Schwertz H., Kosaka Y., Manne B. K., Krauel K., Tolley N. D., Eustes A. S., Guo L., Paine R., Harris E. S., Zimmerman G. A., Weyrich A. S., Rondina W. T. Sepsis alters the transcriptional and translational landscape of human and murine platelets // Blood. 2019. 134(12). 911-923. DOI: 10.1182/blood.2019000067

32. Teixeira S. A., Burim R. V., Viapiano M. S., Bidinotto L. T., Nagashi Marie S. K., Fleury Malheiros S. M., Oba-Shinjo S. M., Andrade A. F., Carlotti C. G. Alpha2beta1 Integrin Polymorphism in Diffuse Astrocytoma Patients // Frontiers in Oncology. 2022. 12. 914156. DOI: 10.3389/fonc.2022.914156

33. Al-Taee H. Z., Alsabti Z. M., Al-Ani L. M. Genetic study of ITGA2 polymorphisms and impact on diabetic retinopathy risk in Al-Anbar population // Archivos Venezolanos de Farmacología y Terapéutica 40(5). 469-476. DOI: 10.5281/zenodo.5449110

34. Li W., Pi L., Yuan J., Gu X., Wang Z., Liu Y., Deng Q., Wang Y., Huang P., Zhang L., Gu X. Impact of Platelet Glycoprotein Ia/IIa C807T Gene Polymorphisms on Coronary Artery Aneurysms of KD Patients // Cardiology Research and Practical. 2021. 10. 1-6. DOI: 10.1155/2021/4895793

35. Anisimova A. V., Gunchenko A. S., Ikonnikova A. Yu., Galkin S. S., Avdonina M. A., Nasedkina T. V. Kliniko-geneticheskiy analiz faktorov riska razvitiya ostroy i khronicheskoy ishemii golovnogo mozga [A clinical and genetic analysis of risk factors for the development of acute and chronic cerebral ischemia] // S.S. Korsakov Journal of Neurology and Psychiatry. 2019. 119(3-2). 62-67. DOI: 10.17116/jnevro201911903262.16

36. Olson N. C., Raffield L. M., Lange L. A., Lange E. M., Longstreth Jr. W. T., Chauhan G., Debette S., Seshadri S., Reiner A. P., Tracy R. P. Associations of activated coagulation factor VII and factor VIIa-antithrombin levels with genome-wide polymorphisms and cardiovascular disease risk // Journal of Thrombosis and Haemostasis. 2018. 16(1). 19-30. DOI: 10.1111/jth.13899

37. Kapusta A. A. Molekulyarno-geneticheskiye osobennosti koronavirusnoy infektsii COVID-19: (literaturnyy obzor) [Molecular and genetic features of coronavirus infection COVID-19 (literature review)] // New impulses for development: research questions, 2021. 1. 17-30. URL: https://cyberleninka.ru/article/n/molekulyarno-geneticheskieosobennosti-koronavirusnoy-infektsii-covid-19-literaturnyy-obzor (Accessed: 27.02.2024)

38. Moisova D. L., Gorodin V. N., Skoblikov N. E., Zotov S. V., Tikhonenko Y. V. Osobennosti polimorfizma nekotorykh genov sistemy gemostaza u bol'nykh COVID-19 [Peculiarities of polymorphism of certain genes of the hemostasis system in patients with COVID-19] // Bashkortostan Medical Journal. 2021 16(6). 35-40. URL: https://cyberleninka.ru/article/n/osobennosti-polimorfizma-nekotoryh-genov-sistemygemostaza-u-bolnyh-covid-19 (Accessed: 27.02.2024)

39. Badescu M. C., Butnariu L. I., Costache A. D., Gheorghe L., Seritean Isac P. N., Chetran A., Leancă S. A., Afrăsânie I., Duca Ș. T., Gorduza E. V., Costache I. I., Rezus C. Acute Myocardial Infarction in Patients with Hereditary Thrombophilia-A Focus on Factor V Leiden and Prothrombin G20210A // Life (Basel). 2023. 13(6). 1371. DOI: 10.3390/life13061371

40. Li Q., Yang W., Zhao K., Sun X., Bao L. Thrombomodulin gene polymorphism and the occurrence and prognostic value of sepsis acute kidney injury // Medicine (Baltimore). 2021. 100(26). e26293. DOI: 10.1097/MD.0000000000026293

41. Watanabe E., Takasu O., Teratake Y., Sakamoto T., Ikeda T., Kotani J., Kitamura N., Ohmori M., Teratani A., Honda G., Hatano M., Mayer B., Schneider E. M., Oda S. A Thrombomodulin Promoter Gene Polymorphism, rs2239562, Influences Both Susceptibility to and Outcome of Sepsis // Frontiers in Medicine (Lausanne). 2022. 8. 762198. DOI: 10.3389/fmed.2021.762198

42. Jiang S., Wang Y., Chen L., Mu H., Meaney C., Fan Y., Pillay J., Wang H., Zhang J., Pan S., Gao C. PAI-1 genetic polymorphisms influence septic patients' outcomes by regulating neutrophil activity // Chinese Medical Journal (Engl). 2023. 136(16). 1959-1966. DOI: 10.1097/CM9.0000000000002316


Review

For citations:


Osikov M.V., Telesheva L.F., Konashov A.G., Gusev A.V., Konashov V.A., Zotova M.A. The role of genetic polymorphisms of hemostasis factors in the pathogenesis and prognosis of sepsis (review). Title in english. 2024;(2(136)):230-246. (In Russ.) https://doi.org/10.34680/2076-8052.2024.2(136).230-246

Views: 54


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2076-8052 (Print)