Preview

Title in english

Advanced search

Mathematical model of behavior of a layered multiferroic structure in inhomogeneous electric fields in the microwave region

https://doi.org/10.34680/2076-8052.2024.1(135).137-153

Abstract

In this work, based on the dispersion characteristics of spin waves and the theory of the magnetoelectric effect, a mathematical model of a multiferroic structure behavior in a non-uniform electric field is constructed. The nature of the exchange interaction is taken into account, and the Rado-Wirtman exchange boundary conditions are also considered based on their representation in terms of free energy density. Based on the constructed mathematical model, the contribution to the dispersion pattern of spin waves of an external electric field of different polarities is estimated. In conclusion, a number of cases of application of the constructed mathematical model in the design of electronically controlled devices for the directional propagation of spin waves, as well as basic devices for neuromorphic computing, are given.

About the Author

A. O. Nikitin
Yaroslav-the-Wise Novgorod State University
Russian Federation

Veliky Novgorod.



References

1. Bichurin M. I., Petrov V. M., Petrov R. V., Tatarenko A. S. Magnetoelectric composites. New York: Ltd, 2019. 296 p.

2. Vopson M. V. Fundamental of multiferroic materials and their possible application // Critical Reviews in Solid State and Materials Sciences. 2015. 40(4). 223-250. DOI: 10.1080/10408436.2014.992584

3. Petrov R. V., Tatarenko A. S., Srinivasan G., Mantese J. V. Antenna miniaturization with ferrite-ferroelectric composites // Microwave and Optical Technology Leters. 2008. 50(12). 3154-3157. DOI: 10.1002/mop.23939

4. Bichurin M. I., Petrov R. V., Vorobyov Yu. D., Kiliba Yu. V. Polosovoy perestraivayemyy magnitoelektricheskiy SVCH fil'tr [Bandpass tunable magnetoelectric microwave filter] // Proceedings of the International Forum on Science, Technology and Education, December 8-12, 1997, Moscow: in issue 2, Issue. 2. Problems of geoecology, exploration and exploitation of mineral deposits. Applications of aerospace technologies in geosciences. Electronic, optical-electronic and microwave devices and systems. New information and intelligent systems and technologies. Problems and achievements of higher and secondary education. Moscow, 1997. P. 234-238.

5. Tatarenko A. S., Srinivasan G., Filippov D. A. Magnetoelectric microwave attenuator // Electronics Letters. 2007. 43(12). 674-675. DOI: 10.1049/el:20070949

6. Bichurin M. I., Petrov R.V. Magnetoelectric Phasers for PAS // Proceedings of the 2nd International Conference on Satellite Communications. Moscow, 1996. P. 172176. DOI: 10.1109/ICSC.1996.864274.

7. Bichurin M. I., Petrov R. V., Soloviev I. N., Soloviev A. N., Kovalenko D. V. Issledovaniye magnitoelektricheskogo SVCH-giratora [The study of magnetoelectric microwave gyrator] // Modern problems of science and education. 2012. 2. 201-208.

8. Petrov R. V., Nikitin A. O., Bichurin M. I., Srinivasan G. Magnetoelectric antenna array // International Journal on Communications Antenna and Propagation. 2020. 10(6). 371-376. DOI 10.15866/irecap.v10i6.18658

9. Multiferroic Materials: Properties, Techniques, and Applications / edited by Junling Wang. CRC Press, 2017. 392 p.

10. Liu M., Sun N. X. Voltage control of magnetism in multiferroic heterostructures // Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2009. 372. 20120439. DOI: 10.1098/rsta.2012.0439

11. Chumak A. V., Kabos P., Wu V., Abert C., Ademann C., Adeyeye F. O., Akerman J. et al. Advances in magnetics roadmap on spin-wave computing // IEEE Transactions on Magnetics. 2022. 58(6). 0800172. DOI: 10.1109/TMAG.2022.3149664

12. Nikitin A. O., Petrov R., Kiselev V., Misilin V., Bozhkov S., Milenov I., Bozhkov P. Magnonic commutator on magnetoelectric gradient structure for artificial neural networks // 18th Conference on Electrical Machines, Drives and Power Systems (ELMA). Varna: Bulgaria, 2023. P. 1-4. DOI: 10.1109/ELMA58392.2023.10202336

13. Grigorieva N. Yu., Kalinikos B. A. Teoriya spinovykh voln v plenochnykh ferromagnitnykh mnogosloynykh strukturakh: monografiya. Saint-Petersburg: Publishing house of Saint Petersburg Electrotechnical University “LETI”, 2008. 179 p.

14. Nikitin A. O., Petrov R. V. Magnetoelectric gradient structures // Journal of Physics: Conference Series. 2021. 2052. 012029. DOI: 10.1088/1742-6596/2052/1/012029

15. Prabhakar A., Stancil D. D. Spin Waves: Theory and Applications. New York, NY: Springer, 2009. 355 p.

16. Gurevich A. G., Melkov G. A. Magnitnyye kolebaniya i volny [Magnetic oscillations and waves]. Moscow: Fizmatlit, 1994. 464 p.

17. Lax B., Button K. Sverkhvysokochatotnyye ferrity i ferrimagnetiki: perevod s angliyskogo [Ultra-high-frequency ferrites and ferrimagnets: translated from English]. Moscow: Mir, 1965. 675 p.

18. Bichurin M. I., Petrov V. M., Filippov D. A., Srinivasan G. Magnitoelektricheskiy effekt v kompozitsionnykh materialakh [Magnetoelectric effect in magnetostrictionpiezoelectric multiferroics]. Veliky Novgorod: Yaroslav-the-Wise NovSU, 2005. 226 p.

19. Rado G. T., Weertman J. R. Spin-wave resonance in a ferromagnetic metal // Journal of Physics and Chemistry of Solids. 1959. 11(3-4). 315-333. DOI: 10.1016/0022-3697(59)90233-1

20. Puszkarski H. Rado–Weertman boundary equation revisitedin terms of the freeenergy density of a thin film // Acta Physica Polonica Series A. 2016. 129(6). P. RK.129.6.1-3. DOI: 10.12693/APhysPolA.129.RK.129.6.1-1


Review

For citations:


Nikitin A.O. Mathematical model of behavior of a layered multiferroic structure in inhomogeneous electric fields in the microwave region. Title in english. 2024;(1(135)):137-153. (In Russ.) https://doi.org/10.34680/2076-8052.2024.1(135).137-153

Views: 30


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2076-8052 (Print)