Preview

Title in english

Advanced search

Calculation of the heat capacities of complex oxides

https://doi.org/10.34680/2076-8052.2024.1(135).31-42

Abstract

The technology for producing a complex oxide is based on knowledge of its thermophysical characteristics, in particular, heat capacity. To calculate its temperature dependence, a previously proposed thermodynamic model of a two-phase local equilibrium region was used. The numerical values of the parameters and coefficients of the model are obtained from a comparison of the theoretical curve with the experimental data given in the literature. It is shown that the construction relations adequately describe experimental arrays of various complex oxides not only in the limited temperature ranges studied, but also make it possible to calculate the heat capacities of oxides in the range from 0 K to their melting point. The need for additional experimental study of the transformation in neodymium orthoniobate in the region of 1000 K is indicated.

About the Author

S. V. Terekhov
Galkin Donetsk Institute for Physics and Engineering
Russian Federation

Donetsk.



References

1. Guskov V. N., Gagarin P. G., Guskov A. V., Tyurin A. V., Gavrichev K. S. Low-temperature heat capacity of lanthanum hafnate // Journal of Inorganic Chemistry. 2019. 64(11). 1210-1214. DOI: 10.1134/S0044457X19110060

2. Kopan A. R., Gorbachuk M. P., Lakiza S. M., Tichenko Y. S. Calorimetric study of the La2Hf2O7 heat capacity in the range 57–302 K // Powder Metallurgy and Metal Ceramics. 2016. 54(11-12). 696-703. DOI: 10.1007/s11106-016-9764-5

3. Denisova L. T., Irtyugo L. A., Kargin Yu. F., Beletsky V. V., Belousova I. V., Denisov V. M. Heat capacity and thermodynamic functions of DyInGe2O7 and HoInGe2O7 germanates in the region of 350-1000 K // Journal of Inorganic Chemistry. 2019. 64(9). 980-983. DOI: 10.1134/S0044457X19090071

4. Egorysheva A. V., Golodukhina S. V., Tyurin A. V., Khoroshilov A. V., Veselov V. O., Svetogorov R. D. Synthesis, structure and thermal properties of complex LnGa0.5Sb1.5O6 oxides with a rosiaite type structure // Journal of Inorganic Chemistry. 2019. 64(9). 901-908. DOI: 10.1134/S0044457X19090101

5. Denisova L. T., Kargin Yu. F., Galiakhmetova N. A., Belousova N. V., Denisov V. M. Synthesis and investigation of the high-temperature heat capacity of EuBiGeO5 // Journal of Inorganic Chemistry. 2020. 65(1). 3-7. DOI: 10.31857/S0044457X20010067

6. Denisova L. T., Kargin Yu. F., Irtyugo L. A., Beletsky V. V., Belousova N. V., Denisov V. M. Synthesis, structure and thermophysical properties of NdGaGe2O7 germanate // Journal of Inorganic Chemistry. 2020. 65(5). 581-585. DOI: 10.31857/S0044457X20050074

7. Nikiforova G. E., Tyurin A. V., Ryumin M. A., Bryukhanova K. I., Khoroshilov A. V., Gavrichev K. S. Heat capacity and thermodynamic functions of dysprosium orthoniobate in the range of 2-1300 K // Journal of Inorganic Chemistry. 2020. 65(5). 643-650. DOI: 10.31857/S0044457X20050189

8. Denisova L. T., Irtyugo L. A., Kargin Yu. F., Beletsky V. V., Belousova N. V., Denisov V. M. Synthesis and high-temperature thermodynamic properties of InFeGe2O7 and GdFeGe2O // Journal of Inorganic Chemistry. 2020. 65(7). 867-871. DOI: 10.31857/S0044457X20070041

9. Tyurin A. V., Khoroshilov A. V., Ryumin M. A., Guskov V. N., Guskov A. V., Gagarin N. G., Nikiforova G. E., Konratieva O. N., Pechkovskaya K. I., Efimov N. N., Gurevich M. V., Gavrichev K. S. Thermodynamic and magnetic properties of praseodymium stannate // Journal of Inorganic Chemistry. 2020. 65(12). 1668-1675. DOI: 10.31857/S0044457X2012020X

10. Nikiforova G. E., Kondratieva O. N., Tyurin A. V., Ryumin M. A., Khoroshilov A. V., Gavrichev K. S. Heat capacity and thermodynamic functions of neodymium orthoniobate // Journal of Inorganic Chemistry. 2021. 66(2). 242-249. DOI: 10.31857/S0044457X21020148

11. Denisova L. T., Kargin Yu. F., Belousova N. V., Galiakhmetova N. A., Denisov V. M. High-temperature heat capacity and thermodynamic properties of HoBiGeO5 and ErBiGeO5 // Inorganic materials. 2018. 54(9). 972-976. DOI: 10.1134/S0002337X18090026

12. Denisova L. T., Kargin Yu. F., Irtyugo L. A., Belousova N. V., Beletsky V. V., Denisov V. M. The heat capacity of In2Ge2O7 and YInGe2O7 in the temperature range 320-1000 K // Inorganic materials. 2018. 54(12). 1315-1319. DOI: 10.1134/S0002337X18120023

13. Denisova L. T., Molokeev M. S., Kargin Yu. F., Ryabov V. V., Chumilina L. G., Belousova N. V., Denisov V. M. Structure and thermodynamic properties of DyGaTi2O7 and EuGaTi2O7 titanates // Inorganic Materials. 2021. 57(7). 768-775. DOI: 10.31857/S0002337X21070058

14. Denisova L. T., Irtyugo L. A., Beletsky V. V., Denisov V. M. High-temperature heat capacity of Pr2Sn2O7 and Nd2Sn2O7 stannates // Solid State Physics. 2016. 58(7). 1259-1262.

15. Denisova L. T., Irtyugo L. A., Beletsky V. V., Belousova N. V., Denisov V. M. High-temperature heat capacity of germanates Pr2Ge2O7 and Nd2Ge2O7 in the region of 350-1000 K // Solid State Physics. 2018. 60(3). 618-622. DOI: 10.21883/FTT.2018.03.45571.285

16. Gulyaeva R. I., Petrova S. A., Chumarev V. M., Mansurova A. N. Hightemperature heat capacity and thermal expansion of FeTa2O6 // Solid State Physics. 2019. 61(10). 1985-1992. DOI: 10.21883/FTT.2019.10.48281.459

17. Stebbins J. F., Carmichael I. S. E., Moret L. K. Heat capacities and entropies of silicate liquids and glasses // Contributions to Mineralogy and Petrology. 1984. 86(5). 131-148. DOI: 10.1007/BF00381840

18. Xing X., Qiao Z., Wei S. Thermodynamic properties of complex oxides in the Sm-Ba-Cu-O system // Metallurgical and Materials Transactions B. 1996. 27(12). 973-978. DOI: 10.1007/s11663-996-0011-1

19. Qiu L., White M. A. The constituent additivity method to estimate heat capacities of complex inorganic solids // Journal of Chemical Educatoon. 2001. 78(8). 1076-1079. DOI: 10.1021/ed078p1076

20. Rakshit S. K., Parida S. C., Chaudhary Z. S., Venugopal V., Sen B. K., Dach S. Heat capacities of some ternary oxides in the system Ba-Fe-O using differential scanning calorimetry // Journal of Alloys and Compounds. 2007. 438(1-2). 279-284. DOI: 10.1016/j.jallcom.2006.08.026

21. Terekhov S. V. Thermodynamic model of a blurred phase transition in metallic glass Fe40Ni40P14B6 // Physics and technology of high pressures. 2018. 28(1). 54-61.

22. Terekhov S. V. Thermal properties of matter within the framework of a two-phase system model // Solid State Physics. 2022. 64(8). 1077-1083. DOI: 10.21883/FTT.2022.08.52710.352

23. Terekhov S. V. Calculation of the base line of the heat capacity of a substance in a two-phase region model in the absence of phase and other transitions // Inorganic Materials. 2023. 59(4). 468-472. DOI: 10.31857/S0002337X23040127

24. Morachevsky A. G., Sladkov I. B., Firsova E. G. Thermodynamic calculations in chemistry and metallurgy: a textbook. St. Petersburg: Lan, 2018. 208 p.

25. Moiseev G. K., Vatolin N. A., Marshuk L. A., Ilyinykh N. I. Temperature dependences of the reduced Gibbs energy of some inorganic substances: an alternative ACTPA data bank. OWN. Yekaterinburg: Ural Branch of the Russian Academy of Sciences, 1997. 230 p.

26. Kubo R. Thermodynamics. Moscow: Mir, 1970. 304 p.

27. Filatov S. K. Generalized concept of increasing the symmetry of crystals with increasing temperature // Crystallography. 2011. 56(6). 1019-1028.

28. Catchen G. L., Williams I. D., Spaar D. M., Wukitch S. J., Adams J. M. Highly asymmetric electric-field gradients at the Nb sites in ferroelastic GdNbO4 and NdNbO4 // Physical Review. 1991. B 43(1). 1138-1141. DOI: 10.1103/PhysRevB.43.1138


Review

For citations:


Terekhov S.V. Calculation of the heat capacities of complex oxides. Title in english. 2024;(1(135)):31-42. (In Russ.) https://doi.org/10.34680/2076-8052.2024.1(135).31-42

Views: 31


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2076-8052 (Print)