Preview

Title in english

Advanced search

On some rigorous results in condensed matter theory

https://doi.org/10.34680/2076-8052.2023.5(134).716-726

Abstract

The work contains a critical analysis of the methods and results currently used and applied in the theory of condensed matter. A unified mathematical apparatus has been developed - the method of functional integration which is equally applicable to all main distributions of statistical physics: microcanonical, canonical, and grand canonical ensembles. Within the framework of this method, an exact factorization of the configuration integral with respect to atomic coordinates was performed and a connection between the microcanonical and canonical ensembles was established. It is shown that interatomic interactions can be eliminated by renormalizing external random fields, and random external fields can be eliminated by renormalizing interatomic potentials. A new formulation of problems of equilibrium statistical mechanics as a dynamic field theory with a Hamiltonian depending on temperature is proposed.

About the Authors

A. Yu. Zakharov
Yaroslav-the-Wise Novgorod State University
Russian Federation

 Veliky Novgorod 



M. A. Zakharov
Yaroslav-the-Wise Novgorod State University
Russian Federation

 Veliky Novgorod 



References

1. Gross D. H. E. Microcanonical thermodynamics. Singapore, World Scientific, 2001. 287 p.

2. Gross D. H. E. Microcanonical thermodynamics and statistical, fragmentation of dissipative systems. The topological structure of the N-body phase space // Physics Reports. 1997. 279(3). 19–202. DOI: 10.1016/S0370-1573(96)00024-5

3. Lavenda B. H. Statistical Physics: A Probabilistic Approach. New York, WileyInterscience, 1991. 371 p.

4. Kac M. Probability and related topics in physical sciences. Volume I. Interscience Publ., New York, 1959. 266 p. (Russ. ed.: Kats M. Veroiatnost' i smezhnye voprosy v fizike. Moscow, Mir Publ., 1965. 407 p.)

5. Lévy P. Problèmes concrets d'analyse fonctionnelle: avec un complément sur les fonctionnelles analytiques par F. Pellegrino [Specific problems of functional analysis: with the addition of F. Pellegrino on analytic functionals]. 2de édition. Paris, GauthierVillars, 1951. 477 p. (Russ. ed.: Levi P. Konkretnye problemy funktsional'nogo analiza: s dobavleniem F. Pellegrino ob analiticheskikh funktsionalakh. Moscow, Nauka Publ., 1967. 510 p.)

6. Ledoux M. The concentration of measure phenomenon. Providence: American Mathematical Society, 2001. 181 p.

7. Zakharov A. Yu. Exact Calculation Method of Partition Function for One-Component Classical Systems with Two-Body Interactions // Physics Letters A. 1990. 147(8/9). 442-444. DOI: 10.1016/0375-9601(90)90603-L

8. Zakharov A. Yu. Functional integration and method of factorization in classical statistical mechanics // Russian Journal of Physical Chemistry A. 2000. 74(1). 40-45.

9. Zakharov A. Yu. Ensembles in classical statistical mechanics and their unification via nonlinear field theory // International Journal of Quantum Chemistry. 2004. 100(4). 442-447. DOI: 10.1002/qua.10808


Review

For citations:


Zakharov A.Yu., Zakharov M.A. On some rigorous results in condensed matter theory. Title in english. 2023;(5(134)):716-726. (In Russ.) https://doi.org/10.34680/2076-8052.2023.5(134).716-726

Views: 37


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2076-8052 (Print)