Simulation of the multicaloric effect in magnetostrictive-ferroelectric layered structures
https://doi.org/10.34680/2076-8052.2023.3(132).481-487
Abstract
A method for calculating the multicaloric effect in magnetostrictive-ferroelectric layered structures is considered. The multicaloric effect is a superposition of magnetocaloric, electrocaloric and elastocaloric ones. As an example of magnetostrictive-ferroelectric layered structures, the layered structure of lead zirconate titanate and cobalt ferrite provides the possibility of increasing the caloric effects. The application of external magnetic and electric fields to the magnetostriction-ferroelectric structure leads to the inducing the elastocaloric effect and thus to the increased multicaloric effect.
About the Author
V. M. PetrovRussian Federation
Veliky Novgorod
References
1. Electrocaloric Materials: New Generation of Coolers. Eds. T. Correia, Qi Zhang. Berlin: Springer, 2014. 255 p.
2. Es’kov A., Anokhin A., Pakhomov O., Semenov A., Fadeev E.,Dedyk A., Kholkin A., Tselev A., Baranov I. V., Lähderanta E. Multiferroic properties of barium strontium titanate ceramics doped with gadolinium and iron // Ferroelectrics. 2021. 574(1). 109-114. DOI: 10.1080/00150193.2021.1888054
3. Starkov A. S., Starkov I. A. Mul'tikaloricheskiy effekt v tverdom tele: novyye aspekty [Multicaloric effect in solids: new aspects] // Journal of Experimental and Theoretical Physics. 2014. 146(2). 297-303. DOI: 10.7868/S0044451014080082
4. Sokolovskiy R. R., Fayzullin V. D., Buchelnikov S. V., Drobosyuk M. Theoretical treatment and direct measurements of magnetocaloric effect in Ni2.19−xFexMn0.81Ga Heusler alloys // Journal of Magnetism and Magnetic Materials. 2013. 343. 6-12. DOI: 10.1016/j.jmmm.2013.04.069
5. Shen B. G., Sun J. R., Hu F. X., Zhang H. W., Cheng Z. H. Recent Progress in Exploring Magnetocaloric Materials // Advanced Materials. 2009. 21(45). 4545-4564. DOI: 10.1002/adma.200901072
6. Dilmieva E. T., Kamantsev A. P., Koledov V. V., Mashirov A. V., Shavrov V. G., Cwik J., Tereshina I. S. Eksperimental'noye modelirovaniye tsikla magnitnogo okhlazhdeniya v sil'nykh magnitnykh polyakh [Experimental modeling of the magnetic cooling cycle in strong magnetic fields] // Physics of the Solid State. 2016. 58(1). 82-86.
7. Bartlett J., Hardy G., Hepburn I. Performance of a fast response miniature Adiabatic Demagnetisation Refrigerator using a single crystal tungsten magnetoresistive heat switch // Cryogenics. 2015. 72-2(2). 111–121. DOI: 10.1016/j.cryogenics.2015.10.004
8. Neese B., Chu B., Lu S.-G., Wang Y., Furman E., Zhang Q. M. Large Electrocaloric Effect in Ferroelectric Polymers Near Room Temperature // Science. 2008. 321(5890). 821-823. DOI: 10.1126/science.1159655
9. Nair B., Usui T., Crossley S., Kurdi S., Guzmán-Verri G. G., Moya X., Hirose S., Mathur N. D. Large electrocaloric effects in oxide multi-layer capacitors over a wide temperature range // Nature. 2019. 575(7783). 468-472. DOI: 10.1038/s41586-019-1634-0
10. Metlov L. S., Koledov V. V., Shavrov V. G., Morozov E. V., Tekhtelev Yu. V., Taskaev S. V. Modelirovaniye elastokaloricheskikh effektov v splavakh Geyslera [Modeling of elastocaloric effects in Heusler alloys] // Chelyabinsk Physical and Mathematical Journal. 2020. 5-4(2). 592-600. DOI: 10.47475/2500-0101-2020-15418
11. Vopson M. M., Fetisov Y. K., Hepburn I. Solid-State Heating Using the Multicaloric Effect in Multiferroics // Magnetochemistry. 2021. 7(12). 154. DOI: 10.3390/magnetochemistry7120154
12. Lisenkov B. K., Man C.-M., Chang J., Almand J., Ponomareva I. Multicaloric effect in ferroelectric PbTiO3 from first principles // American Physical Society. 2013. 87(22). 224101. DOI: 10.1103/physrevb.87.224101
13. Electrocaloric Effect in PZT Thick Film for the Cooling Device Applications. Advanced Functional Materials and Devices. Eds. R. Vandana, R. Gupta, R. P. Tandon, M. Tomar, V. Gupta. Springer Proceedings in Materials (SPM, vol. 14). Springer, 2022. P. 71-79. DOI: 10.1007/978-981-16-5971-3_8
Review
For citations:
Petrov V.M. Simulation of the multicaloric effect in magnetostrictive-ferroelectric layered structures. Title in english. 2023;(3(132)):481-487. (In Russ.) https://doi.org/10.34680/2076-8052.2023.3(132).481-487