Preview

Title in english

Advanced search

Methods for increasing the magnetoelectric effect in composite structures: a review

https://doi.org/10.34680/2076-8052.2023.3(132).462-469

Abstract

The article provides a review of various methods that can be used to increase the magnetoelectric (ME) effect in composite structures based on magnetostrictive and piezoelectric materials. It is shown that the use of adhesive technology and gradient structure, as well as thermal and thermomagnetic treatment of a magnetostrictive amorphous alloy of an ME structure make it possible to achieve a significant increase in the ME effect. To date, great efforts have been made to optimize the strain amplitude in the piezoelectric and magnetostrictive phases of multilayer ME materials. The use of various technologies in the manufacture of ME composites makes it possible, for example, to increase the sensitivity of magnetic field sensors for biomedical applications. Also, an increase in the ME effect opens up great prospects for further research.

About the Authors

E. Е. Ivasheva
Yaroslav-the-Wise Novgorod State University
Russian Federation

Veliky Novgorod



V. S. Leontiev
Yaroslav-the-Wise Novgorod State University
Russian Federation

Veliky Novgorod



D. V. Kovalenko
Yaroslav-the-Wise Novgorod State University
Russian Federation

Veliky Novgorod



M. I. Bichurin
Yaroslav-the-Wise Novgorod State University
Russian Federation

Veliky Novgorod



References

1. Wang Y., Li J., Viehland D. Magnetoelectrics for magnetic sensor applications: status, challenges and perspectives // Materials Today. 2014. 17(6). 269-275. DOI: 10.1016/j.mattod.2014.05.004

2. Giang D. T. H., Tam H. A., Khanh V. T. N., Vinh N. T., Tuan P. A., Tuan N. V., Ngoc N. T., Duc N. H. Magnetoelectric Vortex Magnetic Field Sensors Based on the Metglas/PZT Laminates // Sensors. 2020. 20(10). 2810. DOI: 10.3390/s20102810

3. Liang X., Chen H., Sun N. Magnetoelectric materials and devices // APL Materials. 2021. 9(4). 041114. DOI: 10.1063/5.0044532

4. Zhai J., Xing Z., Dong S., Li J., Viehland D. Magnetoelectric Laminate Composites: An Overview // Journal of the American Ceramic Society. 2008. 91. 351-358. DOI: 10.1111/j.1551-2916.2008.02259.x

5. Wu H., Fu S., Wang S., Pan H., Zha B., Gao A., Li L., Liu Z., Liu L., Jiao J., Bichurin M., Sokolov O., Wang Y. Electrical current visualization sensor based on the magneto-electrochromic effect // Nano Energy. 2022. 98. 107226. DOI: 10.1016/j.nanoen.2022.107226

6. Bichurin M. I., Petrov V. M., Semenov G. A. Magnitoelektricheskiy material dlya komponentov radioelektronnykh priborov [Magnetoelectric material for components of radio electronic devices] // Patent RF, no. 2363074. 2009.

7. Fu S., Cheng J., Jiang T., Wu H., Fang Z., Jiao J., Sokolov O., Ivanov S., Bichurin M., Wang Y. Bias-free Very Low Frequency Magnetoelectric Antenna // Applied Physics Letters. 2023. 122(26). DOI: 10.1063/5.0158020

8. Deng T., Chen Z., Di W., Chen R., Wang Y., Lu L., Luo H., Han T., Jiao J., Fang B. Significant improving magnetoelectric sensors performance based on optimized magnetoelectric composites via heat treatment // Smart Materials and Structures. 2021. 30(8). 085005. DOI: 10.1088/1361-665X/ac0858

9. Freeman E., Harper J., Goel N., Schiff S. J. , Tadigadapa S. Optimization of Metglas 2605SA1 and PZT-5A Magnetoelectric Laminates for Magnetic Sensing Applications // Proceedings of IEEE Sensors. IEEE International Conference on Sensors, 2016. DOI: 10.1109/ICSENS.2016.7808845


Review

For citations:


Ivasheva E.Е., Leontiev V.S., Kovalenko D.V., Bichurin M.I. Methods for increasing the magnetoelectric effect in composite structures: a review. Title in english. 2023;(3(132)):462-469. (In Russ.) https://doi.org/10.34680/2076-8052.2023.3(132).462-469

Views: 98


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2076-8052 (Print)