Preview

Title in english

Advanced search

On the description of the temperature-baric dependence of the effective thermal conductivity of granites

https://doi.org/10.34680/2076-8052.2023.3(132).426-437

Abstract

This paper discusses the results of our comprehensive studies of the temperature-baric dependences of the effective thermal conductivity of granites. For a detailed analysis, we selected some published experimental results of the temperature and pressure dependences of the effective thermal conductivity of a number of granites (as well as granitoids) in the temperature and pressure ranges of ~273– 900 K and 0.1–1500 MPa, which corresponds to the parameters of rocks from the surface layer to depths of more than 50 km of the continental crust. A low-parametric description of the temperature-baric dependence of the effective thermal conductivity is proposed, which is in good agreement with the experimental data, at least in the temperature range of ~273–600 K, in the absence of irreversible changes in the samples as a result of the thermobaric effect.

About the Authors

A. A. Aliverdiev
Dagestan State University; Institute for Geothermal Research and Renewable Energy – Joint Institute for High Temperatures of the Russian Academy of Sciences
Russian Federation

Makhachkala



R. M. Aliyev
Dagestan State University; Institute for Geothermal Research and Renewable Energy – Joint Institute for High Temperatures of the Russian Academy of Sciences
Russian Federation

Makhachkala



A. A. Amirova
Amirkhanov Institute of Physics of DSC RAS
Russian Federation

Makhachkala



V. D. Beibalaev
Dagestan State University; Institute for Geothermal Research and Renewable Energy – Joint Institute for High Temperatures of the Russian Academy of Sciences
Russian Federation

Makhachkala



B. A. Grigoriev
Gazprom VNIIGAZ LLC
Russian Federation

Razvilka



Yu. P. Zarichnyak
Saint Petersburg National Research University of Information Technologies, Mechanics and Optics
Russian Federation

Saint Petersburg



M. R. Efendieva
Dagestan State University
Russian Federation

Makhachkala



References

1. IRENA (2023): Renewable energy statistics 2023 / International Renewable Energy Agency. Abu Dhabi, 2023. 69 p. Available at: https://www.developmentaid.org/api/frontend/cms/file/2023/03/IRENA_RE_Capacity_Statistics_2023.pdf

2. Energy Technology Prospectives 2023 // Report of International Energy Agency. France by IEA, 2023. 459 p. Available at: https://www.developmentaid.org/api/frontend/cms/file/2023/01/EnergyTechnologyPerspectives2023_compressed-1.pdf

3. Alekseenko S. V., Markovich D. M. Kompleksnyy nauchno-tekhnicheskiy proyekt polnogo innovatsionnogo tsikla (KNTP) «Tekhnologii geotermal'noy energetiki» [Integrated scientific and technical project of the full innovation cycle (ISTP) "Technologies of geothermal energy"]. Novosibirsk: Kutateladze Institute of Thermophysics of the Siberian Branch of the Russian Academy of Sciences Publ., 2022.

4. Gusarov V. A., Pisarev D. Yu., Gusarova E. V. Kontseptsiya razvitiya petrotermal'nykh teplovykh elektrostantsiy [The concept of development of petrothermal thermal power plants] // Elektrotekhnologii i elektrooborudovanie v APK. 2021. 68, 1(42).44-49. DOI: 10.22314/2658-4859-2021-68-1-44-49

5. Norden B., Förster A., Förste H.-J., Fuchs S. Temperature and pressure corrections applied to rock thermal conductivity: impact on subsurface temperature prognosis and heat-flow determination in geothermal exploration // Geothermal Energy. 2020. 8(1). 1-19. DOI: 10.1186/s40517-020-0157-0

6. Miranda M. M., Márquez M. I. V., Raymond J., Dezayes C. A numerical approach to infer terrestrial heat flux from shallow temperature profiles in remote northern regions // Geothermics. 2021. 93. 102064. DOI: 10.1016/j.geothermics.2021.102064

7. Furlong K. P., Chapman D. S. Heat flow, heat generation, and the thermal state of the lithosphere // Annual Review of Earth and Planetary Sciences. 2013. 41(1). 385-410. DOI: 10.1146/annurev.earth.031208.100051

8. Annen C., Blundy J. D., Sparks R. S. J. The genesis of intermediate and silicic magmas in deep crustal hot zones // Journal of Petrology. 2005. 47(3). 505-539. DOI: 10.1093/petrology/egi084

9. Nabelek P. I., Whittington A. G., Hofmeister A. M. Strain heating as a mechanism for partial melting and ultrahigh temperature metamorphism in convergent orogens: Implications of temperature dependent thermal diffusivity and rheology // Journal of Geophysical Research. 2010. 115(B12). B12417. DOI: 10.1029/2010JB007727

10. Whittington A. G., Hofmeister A. M., Nabelek P. I. Temperature-dependent thermal diffusivity of the Earth’s crust and implications for magmatism // Nature. 2009. 458. 319-321. DOI: 10.1038/nature07818

11. Huangfei F., Baohua Z., Jianhua G., Zili X., Shuangmeng Z., Shuang M. S., Heping L. Thermal diffusivity and thermal conductivity of granitoids at 283–988 K and 0.3–1.5 GPa // American Mineralogist. 2019. 104(11). 1533-1545. DOI: 10.2138/am-2019-7099

12. Emirov S., Aliverdiev A., Beybalaev V., Amirova A. On the temperature and pressure dependences of the effective thermal conductivity of granites // Thermal Science.2021. 25, 4(A). 2493-2501. DOI: 10.2298/TSCI200408176E

13. Emirov S. N., Aliverdiev A. A., Zarichnyak Y. P., Emirov R. M. Studies of the Effective Thermal Conductivity of Sandstone Under High Pressure and Temperature // Rock Mechanics Rock Engineering. 2021. 54(6). 3165-3174. DOI: 10.1007/s00603-020-02353-3

14. Kant M. A., Ammann J., Rossi E., Madonna C., Höser D., Rudolf von Rohr P. Thermal properties of Central Aare granite for temperatures up to 500 C: Irreversible changes due to thermal crack formation // Geophysical Research Letters. 2017. 44(2). 771-776. DOI: 10.1002/2016GL070990

15. Horai K., Susaki J. The effect of pressure on the thermal conductivity of silicate rocks up to 12 kbar // Physics of the Earth and Planetary Interiors. 1989. 55. 292-305. DOI: 10.1016/0031-9201(89)90077-0

16. Miao S. Q., Li H. P., Chen G. Temperature Dependence of Thermal Diffusivity, Specific Heat Capacity, and Thermal Conductivity for Several Types of Rocks // Journal of Thermal Analysis and Calorimetry. 2014. 115(2). 1057-1063. DOI: 10.1007/s10973-013-3427-2

17. Miranda M. M., Matos C. R., Rodrigues N. V., Pereira A. J. S. C., Costa J. J. Effect of Temperature on the Thermal Conductivity of a Granite with High Heat Production from Central Portugal // Journal of Iberian Geology. 2019. 45(1). 147-161. DOI: 10.1007/s41513-018-0096-9

18. Emirov S. N., Beybalaev V. D., Amirova A. A., Ibragimov A. I., Aliverdiev A. A. Thermal Conductivity Temperature-Pressure Dependence of Rocks and Ceramics // Journal of Physics: Conference Series. 2019. 1172. 012006. DOI: 10.1088/1742-6596/1172/1/012006

19. Aliverdiev A. A., Grigoriev B. A., Aliev R. A., Zarichnyak Yu. P., Beybalaev V. D., Amirova A. A. Temperaturno-baricheskiye zavisimosti effektivnoy teploprovodnosti gornykh porod razlichnoy uporyadochennosti [Temperature-baric dependences of the effective thermal conductivity of rocks of various ordering] // Vesti Gazovoy Nauki. 2021. 4(49). 54-59.

20. Emirov S. N., Aliev R. M., Amirova A. A., Aliverdiev A. A., Beybalaev V. D., Grigoriev B. A., Zarichnyak Y. P. Temperature-baric dependence of the effective thermal conductivity of amorphous and polycrystalline rocks // Materials Today: Proceedings. 2022. 66(3). 866-870. DOI: 10.1016/j.matpr.2022.04.495

21. Sun Q., Zhang W., Zhu Y., Huang Z. Effect of high temperatures on the thermal properties of granite // Rock Mechanics Rock Engineering. 2019. 52. 2691-2699. DOI: 10.1007/s00603-019-1733-0

22. Zhao X. G., Zhao Z. G., Guo Z., Cai M., Li X., Li P. F., Cheng L., Wang J. Influence of Thermal Treatment on the Thermal Conductivity of Beishan Granite // Rock Mechanics and Rock Engineering. 2018. 51(7). 2055-2074. DOI: 10.1007/s00603-018-1479-0


Review

For citations:


Aliverdiev A.A., Aliyev R.M., Amirova A.A., Beibalaev V.D., Grigoriev B.A., Zarichnyak Yu.P., Efendieva M.R. On the description of the temperature-baric dependence of the effective thermal conductivity of granites. Title in english. 2023;(3(132)):426-437. (In Russ.) https://doi.org/10.34680/2076-8052.2023.3(132).426-437

Views: 44


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2076-8052 (Print)