Preview

Title in english

Advanced search

Consideration of shading in sea surface RCS models

https://doi.org/10.34680/2076-8052.2023.3(132).405-418

Abstract

The effectiveness of the implementation of radar systems for water areas monitoring is inextricably linked with the creation of adequate models of the radar cross-section (RCS) of the sea surface, which are required for the efficient detection and tracking of surface objects in order to ensure the safety of marine navigation. The article considers the influence of shading of waves that are far from the observer by closer ones. The modeling of the sea surface based on the Longuet-Higgins probability model for various sea surface conditions ranging from moderate to strong is considered and corresponding simulations are performed. For the obtained models, statistical analysis of the visibility of water surface areas was carried out. It is shown that within the applied wave model, the shading effect appears the most pronounced when the direction of observation is collinear with the wind direction, and the least pronounced at the perpendicular direction. It has been established that with strong waves, the effect of shading is more pronounced. Based on the results of the analysis, an approach to take into account the shading effect in modeling the RCS of the sea surface was proposed.

About the Author

V. N. Mikhailov
Saint Petersburg Electrotechnical University "LETI"
Russian Federation

Saint Petersburg



References

1. Masuko H., Okamoto K., Shimada M., Niwa S. Measurement of Microwave Backscattering Signatures of the Ocean Surface Using X Band and Ka Band Airborne Scatterometers // Journal of Geophysical Research. 1986. 91(C11). 13065-13083. DOI: 10.1029/JC091IC11P13065

2. Herselman P. L., Baker C. J. Analysis of calibrated sea clutter and boat reflectivity data at C- and X-band in South African coastal waters // Radar Systems, 2007: IET International Conference. The Institution of Engineering and Technology on Radar Systems, Edinburgh, 2007. P. 1-5. DOI: 10.1049/cp:20070616

3. Stacy N. J. S., Crisp D., Goh A., Badger D., Preiss M. Polarimetric Analysis of Fine Resolution X-Band SAR Sea Clutter data // IEEE International Conference on Geoscience and Remote Sensing Symposium, IGARSS '05, 29-29 July 2005. Seoul (Korea), 2005. P. 2787–2790. DOI: 10.1109/IGARSS.2005.1525646

4. Stacy, N. J. S., Preiss M., Crisp D. Polarimetric Characteristics of X-Band SAR Sea Clutter // IEEE International Conference on Geoscience and Remote Sensing Symposium, 31 July 2006–04 August 2006. Denver, CO, USA. 2006. DOI: 10.1109/IGARSS.2006.1030

5. Nathanson, F. E., Reilly J. P., Cohen M. N. Radar Design Principles. Second Edition. SciTech Publishing, 1999. 720 p. (English, this is a reprinting of the 1991 edition originally published by McGraw-Hill).

6. Gregers V., Mittal R. An empirical sea clutter model for low grazing angles // IEEE National Radar Conference, 4–8 May. Pasadena, CA, USA, 2009. P. 1-5. DOI: 10.1109/RADAR.2009.4977006

7. Gregers V., Mittal R. An Improved Empirical Model for Radar Sea Clutter Reflectivity. Memorandum Report, Naval Research Laboratory // IEEE Transactions on Aerospace and Electronic Systems. 2012. 48(4). 3512-3524. DOI: 10.1109/TAES.2012.6324732

8. Rosenberg L., Watts S. Radar Sea Clutter: Modelling and target detection // The Institute of Engineering Technology. SciTech Publishing, 2022. 383 p.

9. Minakov E. I., Meshkov A. V., Polynkin A. V. Modelirovaniye otrazheniya radiolokatsionnogo signala ot morskoy poverkhnosti [Modeling of radar signal reflection from the sea surface] // Izvestiya Tula State University. Technical sciences. 2016. 12-2. 164-170.

10. Kutuzov V. M., Mikhailov V. N. Metodika rascheta EPR otrazheniy ot morskoy poverkhnosti pri otsenke zony vidimosti morskoy RLS [Methodology for calculating the EPR of reflections from the sea surface when assessing the visibility zone of a marine radar] // Radar Monitoring Systems-2017 (RMS'2017): Proceedings of the international conference, November 21–23, 2017, Hanoi (Vietnam), 2017. P. 23-32.

11. Franklin W., Ray C., Mehta S. Geometric algorithms for siting of air defense missile batteries // Research Project for Battle. 1994, 2756.

12. Carabaño, J., Sarjakoski T., Westerholm J. Efficient Implementation of a Fast Viewshed Algorithm on SIMD Architectures. The 23rd Euromicro International Conference on Parallel, Distributed, and Network-Based Processing // IEEE, 2015. P. 199-202. DOI: 10.1109/PDP.2015.62

13. Kim Y.-H., Rana S., Wise S. Exploring multiple viewshed analysis using terrain features and optimisation techniques // Computers & Geosciences. 2004. 30(9). 1019-1032. DOI: 10.1016/j.cageo.2004.07.008

14. Wu C., Guan L., Xia Q., Chen G., Chen B. PDERL: an accurate and fast algorithm with a novel perspective on solving the old viewshed analysis problem // Earth Science Informatics. 2021. 14. 619-632. DOI: 10.1007/s12145-020-00545-7

15. Wu Z., Wang Y., Gan W., Zou Y., Dong W., Zhou S., Wang M. A Survey of the Landscape Visibility Analysis Tools and Technical Improvements // International Journal Environmental Research Public Health. 2023. 20(3). 1788. DOI: 10.3390/ijerph20031788

16. Abuzyarov Z. K. Morskoye volneniye i yego prognozirovaniye [Sea agitation and its forecasting]. Leningrad, Gidrometeoizdat Publ., 1981. 166 p.

17. Massel, S. R. Ocean surface wave: their physics and prediction. Singapore, River Edge, NJ, World Scientific, 1996. 491 p.

18. Borodai I. K., Netsvetaev Yu. A. Morekhodnost' sudov: metody otsenki [Seaworthiness of ships: assessment methods]. Leningrad, Sudostroyeniye Publ., 1982. 288 p.

19. Ukazaniya po raschetu nagruzok i vozdeystviy ot voln, sudov i l'da na morskiye gidrotekhnicheskiye sooruzheniya [Instructions for calculating loads and impacts from waves, ships and ice on marine hydraulic structures]: approved by the Document for regulating the production activities of seaports of the Ministry of Transport of Russia: entered into force on January 1, 2002. Moscow: SOYUZMORNIIPROEKT Publ., 2001. 77 p. Available at: https://ohranatruda.ru/upload/iblock/379/4294817487.pdf (Accessed: 14.05.2023).

20. Spravochnyye dannyye po rezhimu vetra i volneniya Barentseva, Okhotskogo i Kaspiyskogo morey [Reference data on the wind and wave regime of the Barents, Okhotsk and Caspian Seas] // Russian Maritime Register of Shipping. St. Petersburg, 2006. 214 p. Available at: https://ohranatruda.ru/upload/iblock/91f/4293747775.pdf (Accessed: 25.04.2023).

21. Hauser D., Kahma K., Krogstad H. E., Lehner S., Monbaliu J. A. J. Measuring and analysing the directional spectra of ocean waves. European cooperation in science and technology. Luxembourg: Publications Office, 2005. 465 p. Available at: https://op.europa.eu/en/publication-detail/-/publication/3318b2ad-dfa1-4b8f-8bed632221bfa26d/language-en (Accessed: 16.05.2023).

22. Mikhailov V. N., Pykov N. S., Bogachev M. I., Kutuzov V. M. Fluktuatsionnyy analiz modeley morskoy poverkhnosti [Fluctuation analysis of models of the sea surface] // Vestnik of NovSU. 2023. 1(130). 129-145. DOI: 10.34680/2076-8052.2023.1(130).129-145

23. Rosenberg L., Watts S. High Grazing Angle Sea-Clutter Literature Review // Defence Science and Technology Organisation Australia. Fairbairn, Canberra (Australia), 2013. 53 p.

24. Ward K. D., Tough R. J. A., Watts S. Sea Clutter: Scattering, the K Distribution and Radar Performance. London, The Institution of Engineering and Technology, 2006. 474 p. DOI: 10.1049/PBRA020E

25. Davidan I. N., Lopatukhin L. I., Rozhkov V. A. Wind waves in the World Ocean. Leningrad, Gidrometeoizdat Publ., 1985. 256 p.


Review

For citations:


Mikhailov V.N. Consideration of shading in sea surface RCS models. Title in english. 2023;(3(132)):405-418. (In Russ.) https://doi.org/10.34680/2076-8052.2023.3(132).405-418

Views: 22


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2076-8052 (Print)