Preview

Title in english

Advanced search

α-nucleophiles as the basis of organized supernucleophilic microheterogeneous systems for the destruction of organophosphorus compounds

https://doi.org/10.34680/2076-8052.2023.3(132).374-382

Abstract

Peroxyhydrolysis of 4-nitrophenyl esters of phosphoric and phosphonic acids has been studied in organized microheterogeneous systems based on dimeric cationic imidazole-containing surfactants (AlkIm+-(CH2)m-Im+Alk ∙ 2Br- , m = 2,3,4, Alk = C12H25, C14H29). Micellar effects of the surfactants (at pH = const and [surfactant]0 = const) reach ~ 10–100 times. Physicochemical parameters of the peroxyhydrolysis process (such as substrate binding constants, hydroperoxide anion nucleophilicity in micellar pseudophase) are described in terms of the pseudophase distribution model. Observed rate enhancement mainly depends on reagent concentration increasing directly connected to hydrophobicity of the substrate and surfactant. Changes of HOO- nucleophilicity under the displacement of the peroxyhydrolysis from water to surfactant micelles also contributed to the micellar effects. Comparative analysis of the regularities of peroxyhydrolysis and alkaline hydrolysis testifies for generality of such features in OMS for nucleophilic substitutions. In this regard, the α-effect as rate constants ratio of peroxyhydrolysis (𝑘m2,𝐻𝑂𝑂−) to base hydrolysis (𝑘m2,𝐻𝑂−) in micellar pseudophase (𝑘m2,𝐻𝑂𝑂−/𝑘m2,𝐻𝑂−) reaches ~ 80–100 times.

Therefore, the α-effect appears not only in water, but in OMS, too.

About the Authors

M. K. Turovskaya
L. M. Litvinenko Institute of Physical-Organic and Coal Chemistry
Russian Federation

Donetsk



T. M. Prokopyeva
L. M. Litvinenko Institute of Physical-Organic and Coal Chemistry
Russian Federation

Donetsk



T. S. Gaidash
L. M. Litvinenko Institute of Physical-Organic and Coal Chemistry
Russian Federation

Donetsk



V. A. Mikhailov
L. M. Litvinenko Institute of Physical-Organic and Coal Chemistry
Russian Federation

Donetsk



References

1. Samiey B., Cheng C.-H., Wu J. Effects of Surfactants on the Rate of Chemical Reactions // Journal of Chemistry. 2014. 1-4. DOI: 10.1155/2014/908476

2. Bedford C. T. Reactions of Carboxylic, Phosphoric, and Sulfonic Acids and their Derivatives // Organic Reaction Mechanisms 2014: An annual survey covering the literature dated January to December 2014. Ed. A. C. Knipe. John Wiley & Sons, 2018. P. 87-122. DOI: 10.1002/9781118941829.ch2

3. Duirk S. E., Desetto L. M., Davis G. M. Transformation of Organophosphorus Pesticides in the Presence of Aqueous Chlorine: Kinetics, Pathways, and Structure-Activity Relationships Environ // Environmental Science and Technology. 2009. 43(7). 2335-2340. DOI: 10.1021/es802868y

4. Pavez P., Oliva G., Millán D. Green solvents as a Promising Approach to Degradation of Organophosphorate Pesticides // ACS Sustainable Chemistry and Engineering. 2016. 3(12). 7023-7031. DOI: 10.1021/acssuschemeng.6b01923

5. Kim K., Tsay O. G., Atwood D. A., Churchill D. G. Destruction, and detection of chemical warfare agents // Chemical Reviews. 2011. 111(9). 5345-5403. DOI: 10.1021/cr100193y

6. Wetting S. D., Verrall R. E. Thermodynamic Studies of Aqueous m-s-m Gemini Surfactants // Journal of Colloid and Interface Science. 2001. 235(2). 310-316. DOI: 10.1006/jcis.2000.7348

7. Wetting S. D., Novak P., Verrall R. E. Thermodynamic and Aggregation Properties of Gemini Surfactants with Hydroxyl Substituted Spacers in Aqueous Solution // Langmuir. 2002. 18(14). 5354-5359. DOI: 10.1021/la011782s

8. Prokopyeva T. M., Mirgorodskaya A. B., Belousova I. A., Zubareva T. M., Turovskaya M. K., Panchenko B. V., Razumova N. G., Gaidash T. S., Mikhailov V. A. Modern approaches to the development of effecient organized microheterogeneous surfactant-based systems for decomposition of organophosphorus compounds: a review // Chemical safety science. 2021. 5(2). 8-48. DOI: 10.25514/CHS.2021.2.20001

9. Zubareva T. M., Belousova I. A., Prokopyeva T. M., Gaidach T. S. Reactivity of Inorganic α-Nucleophiles in Acyl Group Transfer Processes in Water and Surfactant Micelles: II. Alkaline Hydrolysis of Ethyl 4-Nitrophenyl Ethylphosphonate in Systems Based on Dimeric Cationic Surfactants // Russian Journal of Organic Chemistry. 2020. 56(1). 53-58. DOI: 10.1134/S1070428020010091

10. Zubareva T. M., Belousova I. A., Prokopyeva T. M., Gaidach T. S., Razumova N. G., Panchenko B. V., Mikhailov V. A. Reaktsionnaya sposobnost' neorganicheskikh a-nukleofilov v protsessakh perenosa atsil'noy gruppy v vode i mitsellakh PAV: II.1 Sistemy na osnove kationnykh dimernykh PAV v protsessakh shchelochnogo gidroliza 4-nitrofenildietilfosfonata [Reactivity of inorganic α-nucleophiles in the processes of acyl group transfer in water and surfactant micelles: II.1 Systems based on cationic dimeric surfactants in the processes of alkaline hydrolysis of 4-nitrophenyl diethylphosphonate] // Russian Journal of Organic Chemistry. 2020. 56(1). 70-77. DOI: 10.31857/S0514749220010097

11. Simanenko Yu. S., Popov A. F., Prokopyeva T. M., Karpichev E. A., Savelova V. A., Suprun I. P., Bunton K. A. Neorganicheskiye anionnyye kislorodsoderzhashchiye a-nukleofily – effektivnyye aktseptory atsil'noy gruppy. Gidroksilamin – “lider” v ryadu a-nukleofilov [Inorganic anionic oxygen-containing α-nucleophiles are effective acceptors of the acyl group. Hydroxylamine – "leader" in the series of α-nucleophiles] // Russian Journal of Organic Chemistry. 2002. 38(9). 1341-1353.

12. Simanenko Yu. S., Popov A. F., Prokopyeva T. M., Karpichev E. A. Inorganic Anionic Oxygen-Containing α-Nucleophiles-Effective Acyl Group Acceptors: Hydroxylamine Ranks First among the α-Nucleophile Series // Russian Journal of Organic Chemistry. 2002. 38(9). 1286-1298. DOI: 10.1023/A:1021699628721

13. Voloshina A. D., Gumerova S. K., Sapunova А. S., Kulik N. V., Mirgorodskaya A. B., Kotenko A. A., Prokopyeva T. M., Mikhailov V. A., Zakharova L. Y., Sinyashin O. G. The structure – Activity correlation in the family of dicationic imidazolium surfactants: Antimicrobial properties and cytotoxic effect // Biochimica et Biophysica Acta (BBA) / General Subjects. 2020. 1864. 12. 129728. DOI: 10.1016/j.bbagen.2020.12972

14. Kapitanov I. V., Prokopieva T. M., Sadovsky Yu. S., Solomoychenko T. N. Mitsellyarnyye effekty dimernykh imidazoliyevykh PAV v protsesakh perenosa atsil'nykh grupp na gidroksid- i gidroperoksid-iony [Micellar effects of dimeric imidazolium surfactants in the transfer of acyl groups to hydroxide and hydroperoxide ions] // Ukrainian Chemical Journal. 2014. 80(1-2). 30-37.

15. Berezin I. V., Martinek K., Yatsimirskii A. K. Physicochemical Found ations of Micellar // Russian Chemical Reviews. 1973. 42(10). 787-802. DOI: 10.1070/rc1973v042n10abeh002744

16. Bunton C. A. The dependence of micellar rate effects upon reaction mechanism // Advances in Colloid and Interface Science. 2006(16). 123-343. DOI: 10.1016/j.cis.2006.05.008

17. Bhattacharya S., Kumar V. P. Evidence of Enhanced Reactivity of DAAP Nucleophiles toward Dephosphorylation and Deacylation Reactions in Cationic Gemini Micellar Media // The Journal of Organic Chemistry. 2004. 69(2). 559–562. DOI: 10.1021/jo034745


Review

For citations:


Turovskaya M.K., Prokopyeva T.M., Gaidash T.S., Mikhailov V.A. α-nucleophiles as the basis of organized supernucleophilic microheterogeneous systems for the destruction of organophosphorus compounds. Title in english. 2023;(3(132)):374-382. (In Russ.) https://doi.org/10.34680/2076-8052.2023.3(132).374-382

Views: 67


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2076-8052 (Print)