Preview

Title in english

Advanced search

Simulation methods of multicaloric effects in multiferroics

https://doi.org/10.34680/2076-8052.2022.3(128).130-132

Abstract

A method for calculating caloric effects in multiferroics, including magnetocaloric, electrocaloric, barocaloric, and multicaloric effects, is discussed. The possibility of increasing caloric effects in materials with a magnetoelectric effect, as well as the possibility of creating composite magnetoelectric materials, in which the application of one field leads to inducing the caloric effects of different physical nature, due to the mechanical connection between the components of the composite material, is considered. The results of the work are of interest in terms of obtaining a set of characteristics of layered structures necessary for the creation of solid-state coolers in order to increase the reliability of the element base of microelectronics.

About the Author

V. M. Petrov
Новгородский государственный университет имени Ярослава Мудрого
Russian Federation


References

1. Sokolovskiy V.V., Fayzullin R.R., Buchelnikov V.D., et al. Theoretical treatment and direct measurements of magnetocaloric effect in Ni2.19−xFexMn0.81Ga Heusler alloys. Journal of Magnetism and Magnetic Materials, 2013, vol. 343, pp. 6–12. doi: https://doi.org/10.1016/j.jmmm.2013.04.069

2. Shen B.G., Sun J.R., Hu F.X., et al. Recent progress in exploring magnetocaloric materials. Adv. Mater., 2009, vol. 41(38), pp. 4545-4564. doi: https://doi.org/10.1002/chin.201038227

3. Dil'miyeva E.T., Kamantsev A.P., Koledov V.V., et al. Eksperimental'noye modelirovaniye tsikla magnitnogo okhlazhdeniya v sil'nykh magnitnykh polyakh [Experimental modeling of the magnetic cooling cycle in strong magnetic fields]. Fizika tverdogo tela, 2016, vol. 58(1), pp. 82–86.

4. Bartlett J., Hardy G., Hepburn I. Performance of a fast response miniature Adiabatic Demagnetisation Refrigerator using a single crystal tungsten magnetoresistive heat switch. Cryogenics, 2015, vol. 72(2), pp. 111–121. doi: https://doi.org/10.1016/j.cryogenics.2015.10.004

5. Neese B., Chu B., Lu S.-G., et al. Large electrocaloric effect in ferroelectric polymers near room temperature. Science, 2008, vol. 321, pp. 821–823. doi: https://doi.org/10.1126/science.1159655

6. Nair B., Usui T., Crossley S., et al. Large electrocaloric effects in oxide multilayer capacitors over a wide temperature range. Nature, 2019, vol. 575, pp. 468–472. doi: https://doi.org/10.1038/s41586-019-1634-0

7. Metlov L.S., Koledov V.V., Shavrov V.G., et al. Modelirovaniye elastokaloricheskikh effektov v splavakh Geyslera. Chelyab. fiz.-matem. zhurn., 2020, vol. 5(4), pp. 592–600. doi: https://doi.org/10.47475/2500-0101-2020-15418

8. Vopson M.M., Fetisov Y.K., Hepburn I. Solid-state heating using the multicaloric effect in multiferroics. Magnetochemistry, 2021, vol. 7, pp. 154. doi: https://doi.org/10.3390/magnetochemistry7120154

9. Starkov A.S., Starkov I.A. Mul'tikaloricheskiy effekt v tverdom tele: novyye aspekty [Multicaloric effect in solids: new aspects]. ZHETF — Journal of Experimental and Theoretical Physics, 2014, vol. 146(2), pp. 297–303. doi: https://doi.org/10.7868/S0044451014080082

10. Lisenkov S., Mani B.K., Chang C.-M., et al. Multicaloric effect in ferroelectric PbTiO3 from first principles. Phys. Rev. B., vol. 87, article number: 224101. doi: https://doi.org/10.1103/PhysRevB.87.224101


Review

For citations:


Petrov V.M. Simulation methods of multicaloric effects in multiferroics. Title in english. 2022;(3(128)):130-132. (In Russ.) https://doi.org/10.34680/2076-8052.2022.3(128).130-132

Views: 35


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2076-8052 (Print)