Compact UAV based X/L-Band SAR
https://doi.org/10.34680/2076-8052.2022.3(128).44-51
Abstract
The article describes technical realization of compact UAV based X/L-band SAR. It presents a block diagram of the developed radar prototype and describes the structural diagrams of the main functional blocks: the signal generation and processing unit, the coordinate processing unit, the radar image generation unit. The estimation of the resources required for the implementation of signal processing of a programmable logic integrated circuit (FPGA) is given. Examples of radar images obtained during full-scale tests of the radar prototype are given at the end of the article. Novelty of design based on two main factors: broadband quasi-continuous signals (QCS) and the real-time land surface imaging. The usage of QCS leads to the higher stealthiness and noise-immunity. The peak power of transmitter is decreased also. This features are highly demanded while designing RSA systems that can be used on compact UAV.
About the Authors
I. N. ZhukovaRussian Federation
N. E. Bystrov
Russian Federation
S. D. Chebotarev
Russian Federation
A. M. Trofimov
Russian Federation
A. N. Mikhaylov
Russian Federation
References
1. IAI ELTA Systems Ltd. SAR/GMTI UAV Reconnaissance System. EL/M-2055. Available at: http://www.iai.co.il/sip_storage/files/3/27493.pdf (accessed: 03.12.2017).
2. Tsunoda S.I., Pace F., Stence J., Woodring M. Lynx: A highresolution synthetic aperture radar. Sandia. Available at: https://www.sandia.gov/radar/files/spie_lynx.pdf (accessed: 03.12.2017).
3. THALES. I-Master Groundbreaking lightweight surveillance radar. Available at: https://www.thalesgroup.com/en/worldwide/defence/imaster (accessed: 03.12.2017).
4. Leonardo Company. PicoSAR compact, lightweight airborne ground surveillance radar. Available at: http://www.leonardocompany.com/en/-/picosar-1 (accessed: 03.12.2017).
5. Metasensing. MiniSAR — Aerial detection and tracking of moving targets. Available at: https://www.metasensinggroup.com/minisar (accessed: 03.12.2017).
6. ARTEMIS. SlimSAR. Available at: http://www.artemisinc.net (accessed: 03.12.2017).
7. ImSAR. NanoSAR C Data and specification sheet. Available at: http://www.imsar.com/uploads/files/59_IMSAR_NanoDS_Jul2014.pdf (accessed: 19.11.2014).
8. Scientific center of special radio-electronic systems and management of MAI. Small-sized airborne dual-purpose radar station "Kogitor" (MF2). Available at: https://mai.ru/science/dev/index.php?ELEMENT_ID=33319 (accessed: 03.12.2017).
9. Bystrov N.E., Zhukova I.N., Reganov V.M., Chebotarev S.D. Range and doppler ambiguity elimination in coherent radar using quasicontinuous signals. Journal of Mechanical Engineering Research and Developments, 2017, vol. 40, no. 4, pp. 37–46. doi: https://doi.org/10.7508/jmerd.2017.04.005
10. Bystrov N.E., Zhukova I.N. Model' otsenki pomekhoustoychivosti RLS s kvazine-preryvnym rezhimom izlucheniya i priyema signalov s psevdosluchaynoy strukturoy ogibayushchey [A model for assessing the noise immunity of a radar station with a quasi-continuous mode of emitting and receiving signals with a pseudo-random envelope structure]. Vestnik NovGU. Issue: Engineering Sciences, 2011, no. 65, pp. 50–55.
11. Bystrov N., Zhukova I., Reganov V., Chebotarev S. Synthesis of wideband signals with irregular bi-level structure of power spectrum. IEJME-Mathematics Education, 2016, vol. 11(9), pp. 3187–3195.
12. Sazonov N.A. Osobennosti sintezirovaniya apertury antenny pri proizvol'noy trayektorii letatel'nogo apparata [Features of synthesizing the antenna aperture for an arbitrary trajectory of an aircraft]. Radiotekhnika, 1986, no. 8, pp. 89–92.
13. Bystrov N.E., Zhukova I.N., Udaltsov A.V. Sravneniye metodov vysokoskorostnoy svertki slozhnykh signalov s bol'shoy bazoy [Comparison of high-speed convolution methods for complex signals with a large base]. Vestnik NovGU. Issue: Engineering Sciences, 2007, no. 44, pp. 8–11.
Review
For citations:
Zhukova I.N., Bystrov N.E., Chebotarev S.D., Trofimov A.M., Mikhaylov A.N. Compact UAV based X/L-Band SAR. Title in english. 2022;(3(128)):44-51. (In Russ.) https://doi.org/10.34680/2076-8052.2022.3(128).44-51