Zinc lysinate and methionate: synthesis and IR spectrum calculation using the density functional theory method
https://doi.org/10.34680/2076-8052.2025.3(141).495-505
Abstract
Of scientific interest are the physicochemical characteristics of zinc complexes, which are essential for maintaining biological activity and have a great potential for use in medicine and biotechnology due to their unique properties. Using the Hartree–Fock method and DFT/B3LYP/6-31G(p,d) with solvent polarization accounted for via the polarizable continuum model, the structures of zinc (II) lysinate and methionate were modeled. The calculated infrared spectra were compared with experimental data to refine the geometries, and structural models of the compounds were proposed. Data on the coordination of Zn (II) with amino acids are important for the study of little-explored complexes. The results are applicable to the development of antimicrobial and antitumor drugs.
About the Authors
D. V. BespalovRussian Federation
Omsk
O. A. Golovanova
Russian Federation
Omsk
References
1. Maret W. Zinc in Cellular Regulation: The Nature and Significance of “Zinc Signals” // International Journal of Molecular Sciences. 2017. 18 (11). 2285. DOI: 10.3390/ijms18112285
2. Wessels I., Maywald M., Lothar R. Zinc as a gatekeeper of immune function // Nutrients. 2017. 9 (12). 1286. DOI: 10.3390/nu9121286
3. Chasapis C. T., Loutsidou A. C., Spiliopoulou C. A., Stefanidou M. E. Zinc and human health: an update // Archives of toxicology. 2012. 86. 521–534. DOI: 10.1007/s00204-011-0775-1
4. Enass W., Shatha O., Abbas A. Biological activities of amino acid derivatives and their complexes a review // Research journal of pharmaceutical biological and chemical sciences. 2019. 10 (2). 1624–1641.
5. Troshina E. A., Senyushkina E. S. The role of zinc in the synthesis and metabolism of thyroid hormones // Clinical and experimental thyroidology. 2020. 16 (3). 25– 30. DOI: 10.14341/ket12697 (In Russian).
6. Levchuk L. B., Borodulina T. V., Sannikova N. E., Danilova I. G. The clinical significance of the content of free amino acids for the growth and development of children // Ural medical journal. 2017. 149 (5). 11–15. (In Russian).
7. Karakousi R., Tsami P., Spanoudaki M., Dalgarno S. Blue-emitting 2D- and 3D-Zinc coordination polymers based on schiff-base amino acid ligands // Chemistry. 2023. 5 (3). 1770–1780. DOI: 10.3390/chemistry5030121
8. Zhang Y., Li X., Li J., Khan Z. H., Ma F., Liu X. A novel zinc complex with antibacterial and antioxidant activity // BMC Chemistry. 2021. 15 (1). 17. DOI: 10.1186/s13065-021-00745-2
9. Abendrot M., Checinska L., Kusz J., Lisowska K., Zawadzka K., Felczak A., Kalinowska-Lis U. Zinc(II) Complexes with amino acids for potential use in dermatology: synthesis, crystal structures, and antibacterial activity // Molecules. 2020. 25 (4). 951. DOI: 10.3390/molecules25040951
10. Ahmed E. A., Soliman A. M. M., Ali A. M., El-Remaily M. A. E. A. A. A. Boosting the catalytic performance of zinc linked amino acid complex as an eco-friendly for synthesis of novel pyrimidines in aqueous medium // Applied organometallic chemistry. 2021. 35 (5). e6197. DOI: 10.1002/aoc.6197
11. Bossowski A., Stozek K., Rydzewska M., Niklinska W., Gasowska M., Polnik D., Szalecki M., Miklosz A., Chabowski A., Reszec J. Expression of zinc transporter 8 in thyroid tissues from patients with immune and non-immune thyroid diseases // Autoimmunity. 2020. 53 (7). 376–384. DOI: 10.1080/08916934.2020.1815194
12. Mansoor N. B., Jaimin M. P., Dhruv P., Murphy N., Brown R. M., Elsharkawy A. M., Mehta G., Armstrong M. J., Neil D. SARS-CoV-2: is the liver merely a bystander to severe disease? // Journal of hepatology. 2020. 73 (4). 995–996. DOI: 10.1016/j.jhep.2020.05.035
13. Lin P.-H., Sermersheim M., Li H., Lee P. H. U., Steinberg S. M., Ma J. Zinc in wound healing modulation // Nutrients. 2018. 10 (1). 16. DOI: 10.3390/nu10010016
14. Mamand D., Qadr H. Density functional theory and computational simulation of the molecular structure on corrosion of carbon steel in acidic media of some amino acids // Russian journal of physical chemistry. 2022. 96. 2155–2165. DOI: 10.1134/S0036024422100193
15. Bespalov D. V., Golovanova O. A. Magnesium glycinate and tyrosinate: structure calculations and IR spectra by the DFT method // Russian journal of physical chemistry A. 2024. 98 (7). 1380–1387. DOI: 10.1134/S0036024424700377
Review
For citations:
Bespalov D.V., Golovanova O.A. Zinc lysinate and methionate: synthesis and IR spectrum calculation using the density functional theory method. Vestnik of Novgorod State University. 2025;(3(141)):495-505. (In Russ.) https://doi.org/10.34680/2076-8052.2025.3(141).495-505
