Study of the magnetoelectric effect in METGLAS/PZT structures under weak magnetic fields
https://doi.org/10.34680/2076-8052.2025.3(141).506-513
Abstract
The article is devoted to the study of the magnetoelectric effect in magnetostrictive–piezoelectric layered structures intended for use in energy harvesting devices. Investigations of the magnetoelectric coefficient were carried out for different compositions of the Metglas/PZT magnetoelectric element. The composition with the maximum magnetoelectric coefficient was identified. In the AMAG492/PZT-19 structure with dimensions of 30×10×0.5 mm at a frequency of about 52 kHz with three Metglas layers, the magnetoelectric coefficient reached approximately 19 V/(cm·Oe). The dependence of the magnetoelectric effect on bias magnetic fields up to 400 Oe was studied. It was revealed that in the AMAG202/PZT-19 element, the maximum response shifts from a bias magnetic field of 9 Oe for one Metglas layer to 12 Oe for two layers, and to 28 Oe for three layers. The results of the conducted research will be further used for the development and optimization of energy harvesting devices based on multiferroic materials.
About the Authors
V. A. MisilinRussian Federation
Veliky Novgorod
E. V. Kuzmin
Russian Federation
Veliky Novgorod
M. M. Karpov
Russian Federation
Veliky Novgorod
R. V. Petrov
Russian Federation
Veliky Novgorod
References
1. Nan C. W., Bichurin M. I., Dong Sh., Viehland D., Srinivasan G. Multiferroic magnetoelectric composites: historical perspective, status, and future directions // Journal of applied physics. 2008. 103 (3). 031101. DOI: 10.1063/1.2836410
2. Kumar A., Newacheck S., Youssef G. Cumulative optimization of magnetoelectric composite-based wireless energy transfer // Engineering research express. 2024. 6. DOI: 10.1088/2631-8695/ad81b0
3. Liang X., Chen H., Sun N. Magnetoelectric materials and devices // APL Materials. 2021. 9 (4). 041114. DOI: 10.1063/5.0044532
4. Babu S., Kuchipudi S., Suryanarayana S., Siddeshwar A., Bhimasankaram T. Low magnetic field magnetoelectric studies of Ni/PZT/Ni composite sensor // National conference on advances in sensors for aerospace applications (14–15 December, 2007). India, Hyderabad: Research Centre Imarat Publ., 2007. URL: https://www.researchgate.net/publication/344300082-Low-magnetic-field-magnetoelectric-studies-of-NiPZTNi-composite-sensor/references#fullTextFileContent (Accessed: 07.07.2025).
5. Deng Zh., Dapino M. Review of magnetostrictive vibration energy harvesters // Smart materials and structures. 2017. 26 (10). 103001. DOI: 10.1088/1361-665X/aa8347
6. Ryu J., Priya Sh., Uchino K., Kim H.-J. Magnetoelectric effect in composites of magnetostrictive and piezoelectric materials // Journal of electroceramics. 2002. 8. 107–119. DOI: 10.1023/A:1020599728432
7. Bochenek D., Niemiec P., Chrobak A. Effect of chemical composition on magnetic and electrical properties of ferroelectromag-netic ceramic composites // Materials. 2021. 14. 2488.
8. Bochenek D., Chrobak A., Dercz G., Niemiec P., Brzezińska D., Czaja P. The Influence of Terfenol-D content on the structure and properties of multiferroic composites obtained based on PZT-type material and Terfenol-D // Materials. 2025. 18. 235. DOI: 10.3390/ma18020235
9. Li P., Wen Y., Bian L. Enhanced magnetoelectric effects in composite of piezoelectric ceramics, rare-earth iron alloys, and ultrasonic horn // Applied physics letters. 2007. 90. 022503. DOI: 10.1063/1.2431469
10. Ma Z., Ai J., Shi Y., Wang K., B Su. A superhydrophobic droplet‐based magnetoelectric hybrid system to generate electricity and collect water simultaneously // Advanced materials. 2020. 32. 2006839.
11. Prahadan S., Deshmukh P., Jha S. N., Satapathy S., Majumder S. Solar energy harvesting in magnetoelectric coupled manganese ferrite nanoparticles incorporated nanocomposite polymer films // arXiv:2211.01007. URL: https://arxiv.org/abs/2211.01007. DOI: 10.48550/arXiv.2211.01007
Review
For citations:
Misilin V.A., Kuzmin E.V., Karpov M.M., Petrov R.V. Study of the magnetoelectric effect in METGLAS/PZT structures under weak magnetic fields. Vestnik of Novgorod State University. 2025;(3(141)):506-513. (In Russ.) https://doi.org/10.34680/2076-8052.2025.3(141).506-513
