Magnetoelectric effect in composites with different types of connectivity
https://doi.org/10.34680/2076-8052.2025.3(141).367-378
Abstract
This article reviews experimental results from studies of the magnetoelectric effect in composites with various connectivity types. A wide range of studied magnetoelectric composites is presented, both in terms of shape, from macro- to nanostructures, and in terms of material composition. The objective of this review and further research in this area is to establish the complex dependence of the magnetoelectric effect magnitude on the connectivity type. In addition to using the review data on magnetoelectric structures with 0–3 and 3–0; 1–1, 2–1, and 3–1 connectivity types, analytical calculations and modeling of the magnetoelectric coefficients for these structures in the Comsol Multiphysics software will be required. The combination of the obtained results will allow us to find the dependence of the magnetoelectric interaction magnitude in composites on the material parameters and their connectivity type.
About the Authors
E. E. IvashevaRussian Federation
Veliky Novgorod
O. V. Sokolov
Russian Federation
Veliky Novgorod
A. A. Belyshev
Russian Federation
Veliky Novgorod
M. I. Bichurin
Russian Federation
Veliky Novgorod
References
1. Newnham R. E., Skinner D. P., Cross L. E. Connectivity and piezoelectricpyroelectric composites // Materials research bulletin. 1978. 13 (5). 525–536. DOI: 10.1016/0025-5408(78)90161-7
2. Newnham R. E. Properties of materials: anisotropy, symmetry, structure. Oxford: Oxford University Press, 2005. P. 43−87.
3. Harshe G., Dougherty J. P., Newnham R. E. Theoretical modelling of 3-0/0-3 magnetoelectric composites // International journal of applied electromagnetics in materials. 1993. 4 (2). 161–171. DOI: 10.1177/138354169300400211
4. Harshe G., Dougherty J. P., Newnham R. E. Magnetoelectric effect in composite materials // Mathematics in smart structures. 1993. 1919. 224–235. DOI: 10.1117/12.148414
5. Getman I. Magnetoelectric composite materials: theoretical approach to determine their properties // Ferroelectrics. 1994. 162 (1). 45–50. DOI: 10.1080/00150199408245089
6. Wan J., Weng Y., Wu Y., Li Z., Liu J.-M., Guanghou W. Controllable phase connectivity and magnetoelectric coupling behavior in CoFe2O4Pb(Zr,Ti)O3 nanostructured films // Nanotechnology. 2007. 18 (46). 465708. DOI: 10.1088/0957-4484/18/46/465708
7. Ma J., Shi Z., Nan C.-W. Magnetoelectric properties of composites of single Pb(Zr,Ti)O3 rods and Terfenol-D/Epoxy with a single-period of 1-3-Type structure // Advanced materials. 2007. 19. 2571–2573. DOI: 10.1002/adma.200700330
8. Fu B., Lu R., Gao K. Substrate clamping effect onto magnetoelectric coupling in multiferroic BaTiO3-CoFe2O4 core-shell nanofibers via coaxial electrospinning // Europhysics letters. 2015. 112 (2). 27002. DOI: 10.1209/0295-5075/112/27002
9. Xu T., Wang C.-A., Wang C. Synthesis and magnetoelectric effect of composites with CoFe2O4-epoxy embedded in 3–1 type porous PZT ceramics // Ceramics international. 2015. 41 (9). 11080–11085. DOI: 10.1016/J.CERAMINT.2015.05.054
10. Mu X., Zhang H., Zhang C. et al. Poly(vinylidene fluoridetrifluoroethylene) / cobalt ferrite composite films with a self-biased magnetoelectric effect for flexible AC magnetic sensors // Journal of materials science. 2021. 56 (16). 9728–9740. DOI: 10.1007/s10853-021-05937-8
11. Wu D., Gong W., Deng H., Li M. Magnetoelectric composite ceramics of nickel ferrite and lead zirconate titanate via in situ processing // Journal of physics D: applied physics. 2007. 40 (16). 5002. DOI: 10.1088/0022-3727/40/16/037
12. Dong S., Zhai J., Li J., Viehland D. Near-ideal magnetoelectricity in highpermeability magnetostrictive/piezofiber laminates with a (2-1) connectivity // Applied physics letters. 2006. 89. 252904. DOI: 10.1063/1.2420772
13. Gao J., Shen L., Wang Y., Gray D., Li J., Viehland D. Enhanced sensitivity to direct current magnetic field changes in Metglas/Pb(Mg1/3Nb2/3)O3–PbTiO3 laminates // Journal of applied physics. 2011. 109 (7). 074507. DOI: 10.1063/1.3569629
14. Nair S. S., Pookat G., Saravanan V., Anantharaman M. R. Lead free heterogeneous multilayers with giant magneto electric coupling for microelectronics/microelectromechanical systems applications // Journal of applied physics. 2013. 114 (6). 064309. DOI: 10.1063/1.4818411
15. Chu Z., Shi H., Shi W., Liu G., Wu J., Yang J., Dong S. Enhanced Resonance Magnetoelectric Coupling in (1-1) Connectivity Composites // Advanced Materials. 2017. 29 (19).1606022. DOI: 10.1002/adma.201606022
16. Saha S., Acharya S., Liu Y., Page M.R., Srinivasan G. Review of Magnetoelectric Effects on Coaxial Fibers of Ferritesand Ferroelectrics // Applied sciences. 2025. 15 (9). 5162. DOI: 10.3390/app15095162
Review
For citations:
Ivasheva E.E., Sokolov O.V., Belyshev A.A., Bichurin M.I. Magnetoelectric effect in composites with different types of connectivity. Vestnik of Novgorod State University. 2025;(3(141)):367-378. (In Russ.) https://doi.org/10.34680/2076-8052.2025.3(141).367-378
