Preview

Title in english

Advanced search

Study of magnetoelectric elements characteristics for magnetoelectric synchronous generator

https://doi.org/10.34680/2076-8052.2025.1(139).123-134

Abstract

The paper is devoted to the study of the characteristics of magnetoelectric elements for a magnetoelectric synchronous generator. Two types of ME elements with different geometric dimensions of 70×12×0,54 mm and 30×10×0,54 mm were considered in the framework of the study. The influence of the dimensions of the generator magnetoelectric elements on the conversion efficiency is considered. The measurement results show the possibility of using magnetoelectric elements to create a generator. The article presents the characteristics of the elements in the resonant mode and non-resonant mode. Measurements have shown that at the resonant frequency, the output power can increase significantly. Thus, the output power at the resonant frequency of about 51 kHz was 0,9 mW. The results obtained demonstrate significant potential for using ME elements in energy generators, and the use of several such elements in the resonant mode will allow generating tens of watts of power, which makes such devices promising for powering non-volatile devices.

About the Authors

V. A. Misilin
Yaroslav-the-Wise Novgorod State University
Russian Federation

Veliky Novgorod



E. V. Kuzmin
JSC "OKB-Planeta"
Russian Federation

Veliky Novgorod



R. V. Petrov
Yaroslav-the-Wise Novgorod State University
Russian Federation

Veliky Novgorod



References

1. Bichurin M. I., Petrov V. M., Petrov R. V., Tatarenko A. S. Magnetoelectric Composites. Singapore: Pan Stanford Publishing Pte. Ltd, 2019. 296 p.

2. Nan C. W., Bichurin M. I., Dong S., Viehland D., Srinivasan G. Multiferroic magnetoelectric composites: Historical perspective, status, and future directions // Journal of Applied Physics. 2008. 103. 031101. DOI: 10.1063/1.2836410

3. Petrov R. V., Kolesnikov N. A., Bichurin M. I. Magnetoelectric alternator // Energy Harvesting and Systems. 2016. 3 (2). 173–180. DOI: 10.1515/ehs-2015-0024

4. Petrov R. V., Kolesnikov N. A., Bichurin M. I. Energy harvesting device based on magnetoelectric elements // Fundamental research. 2015. 7-4. 712–717. (In Russian).

5. Ma Z., Ai J., Shi Y., Wang K., B Su. A superhydrophobic droplet‐based magnetoelectric hybrid system to generate electricity and collect water simultaneously // Advanced Materials. 2020. 32 (50). 2006839.

6. Prahadan S., Deshmukh P., Jha S. N., Satapathy S., Majumder S. Solar energy harvesting in magnetoelectric coupled manganese ferrite nanoparticles incorporated nanocomposite polymer films // arXiv:2211.01007. 2022. DOI: 10.48550/arXiv.2211.01007

7. Bochenek D., Niemiec P., Chrobak A. Effect of chemical composition on magnetic and electrical properties of ferroelectromagnetic ceramic composites // Materials. 2021. 14 (10). 2488. DOI: 10.3390/ma14102488

8. Li P., Wen Y., Bian L. Enhanced magnetoelectric effects in composite of piezoelectric ceramics, rare-earth iron alloys, and ultrasonic horn // Applied Physics Letters. 2007. 90. 022503. DOI: 10.1063/1.2431469

9. Saha O., Truong B. D. Roundy S. A review of wireless power transfer using magnetoelectric structures // Smart Materials and Structures. 2022. 31. 113001.

10. Deng Zh., Dapino M. Review of magnetostrictive vibration energy harvesters // Smart Materials and Structures. 2017. 26 (10). 103001. DOI: 10.1088/1361-665X/aa8347

11. Chu Zh., Cui J., Wang Y., Du Z., Pourhosseini A. M. J., Li N., Dan W., Gao X., Liang X. Multilayered magnetoelectric composites for precise and wide-range current sensing // Applied Physics Letters. 2024. 124. 252907. DOI: 10.1063/5.0217772

12. Muhammad S., Arooj F., Aneeza K., Ayesha R., Sana M. Perovskite solar cells and their types // Kashf Journal of Multidisciplinary Research. 2025. 2 (1). 45–90. DOI: 10.71146/kjmr202

13. Kumar A., Newacheck S., Youssef G. Cumulative optimization of magnetoelectric composite-based wireless energy transfer // Engineering Research Express. 2024. 6 (4). 04LT01. DOI: 10.1088/2631-8695/ad81b0

14. Marrella A., Suarato G., Fiocchi S., Chiaramello E., Bonato M., Parazzini M., Ravazzani P. (2023). Magnetoelectric nanoparticles shape modulates their electrical output // Frontiers in Bioengineering and Biotechnology. 2023. 11. 1219777. DOI: 10.3389/fbioe.2023.1219777

15. Bochenek D., Chrobak A., Dercz G., Niemiec P., Brzezińska D., Czaja P. The influence of Terfenol-D content on the structure and properties of multiferroic composites obtained based on PZT-type material and Terfenol-D // Materials. 2025. 18. 235. DOI: 10.3390/ma18020235

16. Bichurin M., Sokolov O., Ivanov S., Leontiev V., Lobekin V., Semenov G., Wang Y. Modeling the converse magnetoelectric effect in the low-frequency range // Sensors. 2023. 24 (1). 151. DOI: 10.3390/s24010151


Review

For citations:


Misilin V.A., Kuzmin E.V., Petrov R.V. Study of magnetoelectric elements characteristics for magnetoelectric synchronous generator. Title in english. 2025;(1(139)):123-134. (In Russ.) https://doi.org/10.34680/2076-8052.2025.1(139).123-134

Views: 12


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2076-8052 (Print)