Solid-state energy harvesting devices
https://doi.org/10.34680/2076-8052.2021.4(125).33-37
Abstract
The global energy crisis and environmental pollution, caused mainly by the increased consumption of non-renewable energy sources, have prompted researchers to explore alternative energy technologies that can use the energy available in the environment Mechanical energy is the most common environmental energy that can be captured and converted into useful electrical energy. Piezoelectric, magnetostrictive and magnetoelectric transformations are the most common mechanisms of energy collection. As a result, it is expected that in the near future many electronic devices will be powered by piezoelectric, magnetostrictive and magnetoelectric generators. This article provides an overview of the current state of solid-state energy harvesting devices, in particular, piezoelectric, magnetostrictive and magnetoelectric. The principles of energy conversion are outlined; the mechanisms of operation are explained.
About the Authors
E. V. KuzminRussian Federation
V. S. Leontiev
Russian Federation
A. A. Chulanov
Russian Federation
D. V. Kovalenko
Russian Federation
D. A. Usik
Russian Federation
R. V. Petrov
Russian Federation
References
1. Petrov R.V., Kuzmin E.V., Bichurin M.I., Leontiev V.S., Sokolov O.V. Hybrid magnetoelectric converter. Journal of Physics: Conference Series. Electronic edition, 2020, ser. 1658, article no. 012038. doi: https://doi.org/10.1088/1742-6596/1658/1/012038
2. Kuzmin E.V., Leontiev V.S., Petrova A.R., Nemtsev L.A., Petrov R.V. Investigation of the magnetoelectric structure of Metglas/GaAs/Metglas for use in energy sources. Vestnik Novgorodskogo gosudarstvennogo universiteta – Vestnik NovSU, Issue: Engineering Sciences, 2021, no. 2(123). pp. 31-35. doi: https://doi.org/10.34680/2076-8052.2021.2(123).31-35
3. Kuzmin E.V., Platonov S.V., Bichurin M.I., Khavanova M.A., Nikitin A.O., Petrov R.V. The study of microwave range energy harvesting device. Journal of Physics: Conference Series. Electronic edition, 2019, ser. 1352, art. No. 012029. doi: https://doi.org/10.1088/1742-6596/1352/1/012029
4. Suleimanov A.I., Saidov O.A. Magnitouprugiy effekt pri simmetrichnom izgibe s vrashcheniyem [Magnetoelastic effect at symmetric rotational bending]. Monitoring. Nauka i tekhnologii – Monitoring. Science and Technology, 2013, no. 2, art. no. 12.
5. Akulov N.S., Gelfenbein A. Vliyaniye uprugikh napryazheniy na khod krivoy namagnichivaniya [Influence of elastic stresses on the course of the magnetization curve]. Zhurnal eksperimental'noy i teoreticheskoy fiziki – Journal of Experimental and Theoretical Physics, 1933, vol. 3, no. 1.
6. Petrov R.V., Petrov V.M., Bichurin M.I., Zhou Y., Priya S. Modeling of dimensionally graded magnetoelectric energy harvester. Journal of Magnetism and Magnetic Materials, 2015, vol. 383, pp. 246-249. doi:10.1016//jmmm.2014.10.145
7. Petrov R.V., Kolesnikov N.A., Bichurin M.I. Magnetoelectric alternator. Energy Harvesting and Systems, 2016, vol. 3, no. 2, pp. 173-180. doi: 10.1515/ehs-2015-0024
8. Petrov R.V., Bichurin M.I. Magnitoelektricheskiy preobrazovatel' energii [Magnetoelectric energy converter]. Trudy mezhdunar. konf. “Elektromekhanika, elektrotekhnologii, elektrotekh-nicheskiye materialy i komponenty” – Proceedings of the International Conference “Electromechanics, Electrical Technologies, Electrical Materials and Components”, Alushta, Crimea, 2016, pp. 117-118.
9. Bichurin M., Kolesnikov N., Petrov R., Slavoljub A. Magnetoelectric energy source. Electrotechnica and Electronica, 2015, vol. 50, no. 9-10, pp.19-22.
10. Zhai J., Xing Z., Dong S., Li J., & Viehland D. Magnetoelectric laminate composites: an overview. Journal of the American Ceramic Society, 2008, vol. 91, pp. 351-358. doi: https://doi.org/10.1111/j.1551-2916.2008.02259.x
11. Yan B., Zhang C., Li L. Design and fabrication of a highefficiency magnetostrictive energy harvester for high-impact vibration systems. IEEE Trans. Magn., 2015, vol. 51, art. no. 8205404. doi: https://doi.org/10.1109/TMAG.2015.2441295
12. Kita S., Ueno T., Yamada S. Improvement of force factor of magnetostrictive vibration power generator for high efficiency. J. Appl. Phys, 2015, vol. 117, 17B508, doi: https://doi.org/10.1063/1.4907237
13. Shin D.J., Jeong S.J., Seo C.E., Cho K.H., Koh J.H. Multilayered piezoelectric energy harvesters based on PZT ceramic actuators. Ceram. Int., 2015, vol. 41 (S1), pp. S686–S690.
14. Long Gu, Nuanyang Cui, Li Cheng, Qi Xu, Suo Bai, Miaomiao Yuan, Weiwei Wu, Jinmei Liu, Yong Zhao, Fei Ma, Yong Qin, and Zhong Lin Wang. Flexible Fiber Nanogenerator with 209 V Output Voltage Directly Powers a LightEmitting Diode. Nano Lett., 2013, vol. 13 (1), pp. 91-94. doi: https://doi.org/10.1021/nl303539c
15. Nan, C.-W., Bichurin, M.I., Dong, S., Viehland, D., Srinivasan, G. Multiferroic magnetoelectric composites: historical perspectives, status, and future directions. J. Appl. Phys. 2008, vol. 103, p. 031101. doi: https://doi.org/10.1063/1.2836410
16. Petrov R.V., Kolesnikov N.A., Bichurin M.I. Ustroystvo sbora energii s primeneniyem magnitoelektricheskikh elementov [Energy collection device using magnetoelectric elements]. Fundamental'nyye issledovaniya – Fundamental research, 2015, no. 7-4, pp. 712-717.
17. Sujoy Kumar Ghosh, Krittish Roy, Hari Krishna Mishra, Manas Ranjan Sahoo, Biswajit Mahanty, Prakash Nath Vishwakarma, and Dipankar Mandal. Rollable Magnetoelectric Energy Harvester as a Wireless IoT Sensor ACS Sustainable. Chemistry & Engineering, 2020, vol. 8(2), pp. 864-873.
Review
For citations:
Kuzmin E.V., Leontiev V.S., Chulanov A.A., Kovalenko D.V., Usik D.A., Petrov R.V. Solid-state energy harvesting devices. Title in english. 2021;(4(125)):33-37. (In Russ.) https://doi.org/10.34680/2076-8052.2021.4(125).33-37