Preview

Title in english

Advanced search

Evaluation of the improvement of the accuracy of the orientation and navigation system with structural redundancy

https://doi.org/10.34680/2076-8052.2024.3(137).363-378

Abstract

This article discusses an approach to the construction of inertial orientation and navigation systems using structural redundancy. The structural redundancy of the inertial module is achieved by installing an excessive number of primary information sensors the sensitivity axes of which are non-orthogonal to each other. This approach to building an orientation and navigation system increases its reliability, accuracy and fault tolerance. An example of a technical solution for a small-sized inertial orientation and navigation system with structural redundancy based on a MEMS accelerometer, a MEMS gyroscope and a magnetometer for aviation applications is given. A mathematical model and algorithm for processing the output signals of an orientation and navigation system with structural redundancy are presented. The evaluation of the comparison of the accuracy of orientation and navigation systems with and without structural redundancy was performed.

About the Authors

D. V. Pavlov
JSC «ECICARUS»
Russian Federation

Veliky Novgorod



I. S. Telina
Yaroslav-the-Wise Novgorod State University
Russian Federation

Veliky Novgorod



K. D. Samuilova
JSC «ECICARUS»
Russian Federation

Veliky Novgorod



References

1. Pavlov D. V, Petrov M. N., Lukin K. G. Metod temperaturnoy kalibrovki bloka mikromekhanicheskikh akselerometrov besplatformennoy inertsial'noy navigatsionnoy sistemy [Method of temperature calibration of the micromechanical accelerometer block of the strapdown inertial navigation system] // Metrologiya. 2015. 2. 25-35.

2. Narasimhappa M., Mahindrakar A. D., Guizilini V. C., Terra M. H., Sabat S. L. MEMS-Based IMU Drift Minimization: Sage Husa Adaptive Robust Kalman Filtering // IEEE Sensors Journal. 2020. 20 (1). 250-260. DOI: 10.1109/JSEN.2019.2941273

3. Stepanov О. А., Litvinenko Yu. A., Vasiliev V. A., Toropov A. B., Basin M. V. Polynomial Filtering Algorithm Applied to Navigation Data Processing under Quadratic Nonlinearities in System and Measurement Equations. Part 1. Description and Comparison with Kalman Type Algorithms // Giroskopiya i Navigatsiya. 2021. 29, 3 (114). 3-33. DOI: 10.17285/0869-7035.0068

4. Vodicheva L. V., Bel'skiy L. N., Parysheva Yu. V., Lystsov A. A. Inertial measuring units for future-generation aerospace products: fault-tolerance // Vestnik of Samara University. Aerospace and mechanical engineering. 2018. 17 (1). 28-44. DOI: 10.18287/2541-7533-2018-17-1-28-44

5. Aleshkin V. V., Aleshkin M. V., Sokolsky A. S., Matveev A. S. Issledovaniye algoritmov obrabotki informatsii izbytochnogo bloka mikromekhanicheskikh akselerometrov [Information processing algorithms research of the micromechanical accelerometers superfluous block] // Vestnik of Saratov State Technical University. 2007. 1. 96-105.

6. Aleshkin V. V., Matveev A. S., Aleshkin M. V. Matematicheskiye modeli, metody i algoritmy obrabotki izbytochnoy informatsii izmeritel'nogo bloka [Mathematical models, methods and algorithms for processing redundant information of the measuring block]. Internet and Innovation: Proceedings of the International Conference. Saratov: Izd- vo SSTU, 2008. P. 377-380.

7. Turkin V.A. Primeneniye matematicheskogo modelirovaniya pri razrabotke metodiki proyektirovaniya blokov chuvstvitel'nykh elementov dlya BINS s neortogonal'noy oriyentatsiyey izmeritel'nykh osey [Application of mathematical modeling in design methodology of inertial measurement units for strapdown inertial systems with non- orthogonal orientation of measurement axes] // Izvestiya Tula State University. Technical sciences. 2023. 4. 326-334. DOI: 10.24412/2071-6168-2023-4-326-335

8. Turkin V. A. Rezul'taty razrabotki metodiki kontrolya blokov chuvstvitel'nykh elementov dlya BINS s neortogonal'noy oriyentatsiyey izmeritel'nykh osey [Results of the development of a methodology for the control of inertial measurement units for sins with non-orthogonal orientation of measuring axes] // Izvestiya Tula State University. Technical sciences. 2023. 2. 257-264. DOI: 10.24412/2071-6168-2023-2-257-264

9. Zotov S. A., Rivers M. C., Trusov A. A., Shkel A. M. Folded MEMS pyramid inertial measurement unit // IEEE Sensors Journal. 2011. 11 (11). 2780-2789.

10. Potter J. E., Deckert J. C. Minimax Failure Detection and Identification in Redundant Gyro and Accelerometer Systems // Journal of Spacecraft and Rockets. 1973. 10 (4). 236-243. DOI: 10.2514/3.27753.

11. Ebner R. E., Mark J. G. Redundant Integrated Flight-Control/Navigation Inertial Sensor Complex // Journal of Guidance, Control, and Dynamics. 1978. 1 (2). 143-149. DOI: 10.2514/3.55757.

12. Daly K. C., Gai E., Harrison J. V. Generalized Likelihood Test for FDI in Redundant Sensor Configurations // Journal of Guidance, Control, and Dynamics. 1979. 2 (1). 9-17. DOI: 10.2514/3.55825.

13. Marinushkin P. S., Nesterenko T. G. Malogabaritnaya sistema personal'noy navigatsii na baze neortogonal'nogo inertsial'nogo izmeritel'nogo bloka s izbytochnoy strukturoy [Miniature personal navigation system based on non-orthogonal redundant inertial measurement unit] // Science and Education of Bauman MSTU. 2016. 8. 121-134. URL: https://earchive.tpu.ru/bitstream/11683/45802/1/reprint-nw-20198.pdf (Accessed: 28.02.2024). DOI: 10.7463/0816.0843239

14. Neortogonal'naya BINS dlya malykh BPLA [Non-orthogonal BINS for small UAVs] // Habr, 2011. URL: http://special.habrahabr.ru/kyocera/p/114513/ (Accessed: 28.02.2024).

15. Marinushkin P. S., Nesterenko T. G. Redundant measurement unit based on micromechanical sensors for miniature personal navigation systems // Engineering journal of Don. 2016. 3 (42). 38-46. URL: http://www.ivdon.ru/uploads/article/pdf/IVD_43_Marinushkin_Nesterenko_N.pdf_189517c8b2.pdf (Accessed: 28.02.2024).

16. Kalikhman D. M., Turkin V. A. Metodika kontrolya blokov chuvstvitel'nykh elementov s neortogonal'noy oriyentatsiyey izmeritel'nykh osey [Methodology for monitoring blocks of sensitive elements with non-orthogonal orientation of measuring axes] // Gyroscopy and Navigation. 2023. 31, 4 (123). 44-63.

17. Kalikhman D. M., Turkin V. A., Deputatova Ye. A., Akmayev A. A. Matematicheskaya model' izmeritel'nogo kanala shestiosnogo izmeritelya lineynogo uskoreniya s neortogonal'noy oriyentatsiyey osey chuvstvitel'nosti – pribora BILU [Mathematical model of the measurement channel for the six-axis linear acceleration sensor with non-orthogonal orientation of sensitivity axes – BILU device] // Navigation and control of aircraft. 2023. 4 (43). 2-37.

18. Alekhova E.Y., Zhbanov Y.K., Klimov D.M. Ispol'zovaniye izbytka osey chuvstvitel'nosti dlya povysheniya tochnosti izmereniy [Using redundancy of sensitivity axes to improve measurement accuracy] // Mechanics of Solids. 2013. 5. 24-27.

19. Vodicheva L. V. Povysheniye nadezhnosti i tochnosti besplatformennogo inertsial'nogo izmeritel'nogo bloka pri izbytochnom kolichestve izmereniy [Increasing reliability and accuracy of strapdown inertial measuring unit with redundant measurement quantity] // Gyroscopy and Navigation. 1997. 1. 55-67.

20. Khamidullin V. K. Tekhnicheskiye sredstva navigatsii i upravleniya dvizheniyem: uchebnoye posobiye [Technical means of navigation and traffic control: tutorial]. Kaliningrad: Izd-vo BGTU, 2019. 142 p.


Review

For citations:


Pavlov D.V., Telina I.S., Samuilova K.D. Evaluation of the improvement of the accuracy of the orientation and navigation system with structural redundancy. Title in english. 2024;(3(137)):363-378. (In Russ.) https://doi.org/10.34680/2076-8052.2024.3(137).363-378

Views: 20


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2076-8052 (Print)