Preview

Title in english

Advanced search

Influence of the number of magnetostrictive fibers on the magnetoelectric effect in the structure of PZT-19 / AMAG-225

https://doi.org/10.34680/2076-8052.2024.3(137).341-350

Abstract

The article presents an experimental study of the magnetoelectric effect in three composite structures, where a CTS-19 plate was used as the piezoelectric phase, and a plate of amorphous soft magnetic alloy AMAG-225, 4 AMAG-225 fibers and 5 AMAG-225 fibers were used as the magnetostrictive phase. The graphs of the dependence of the output voltage on the frequency and the magnetoelectric coefficient on the frequency for the manufactured composites are given. In the structure using a magnetostrictive plate, the magnetoelectric coefficient was 12,99 V/(cm⸱Oe), with the use of 4 magnetostrictive fibers – 5,41 V/(cm⸱Oe), with the use of 5 magnetostrictive fibers – 20,36 V/(cm⸱Oe). It was found that with the use of a larger number of AMAG-225 fibers, an increase in the magnetoelectric effect is observed compared to the structures where 4 fibers or an AMAG-225 plate are used.

About the Authors

E. E. Ivasheva
Yaroslav-the-Wise Novgorod State University
Russian Federation

Veliky Novgorod



V. S. Leontiev
Yaroslav-the-Wise Novgorod State University
Russian Federation

Veliky Novgorod



I. S. Osipova
Yaroslav-the-Wise Novgorod State University
Russian Federation

Veliky Novgorod



M. I. Bichurin
Yaroslav-the-Wise Novgorod State University
Russian Federation

Veliky Novgorod



References

1. Ivanov S. N., Semenov G. A. Tekhnologiya magnitop'yezofibera [Magnetopiezofiber technology] // Microwave and Telecommunication Technology. Sevastopol, 2020. 1-1. 314.

2. Bichurin M. I., Semenov G. A., Ivanov S. N., Leontyev V. S. Patent RU No. 184785 U1 Russian Federation, MPK H01L (2006.01). Magnetopiezofiber: No. 2018128132: decl. 2018.07.31; publ. 2018.11.08 / applicant: Federal State Budgetary Educational Institution of Higher Education "Yaroslav-the-Wise Novgorod State University". 5 p.

3. Wang Y., Gray D., Berry D., Viehland D., Gao J., Li J., Li M. An Extremely Low Equivalent Magnetic Noise Magnetoelectric Sensor // Advanced Materials. 2011. 23 (35). 4111-4114.

4. Dzhaparidze M. V., Musatov V. I., Savelyev D. V., Fetisov L. Yu. Vliyaniye geometricheskikh kharakteristik magnitostriktsionnogo kompozita na yego magnitostriktsiyu [Influence of geometric characteristics of magnetostrictive composite on its magnetostriction] // Optical technologies, materials and systems: collection of reports of the Russian scientific and technical conference with international participation (Optotekh – 2020). Moscow, 2020. P. 280-284.

5. Dzhaparidze M.V., Musatov V.I., Savelyev D. V., Fetisov L. Yu. Vliyanie materiala matricy na magnitostrikciyu volokonnyh kompozitov [Impact of matrix materials on fiber composites magnetostriction] // Collection of reports of the Russian scientific and technical conference with international participation. 2021. Vol. 1. P. 54-59.

6. Bichurin M., Petrov R., Sokolov O., Leontiev V., Kuts V., Kiselev D., Wang Y. Magnetoelectric Magnetic Field Sensors: A Review // Sensors. 2021. 21 (18). 6232.

7. Turutin A. V., Kubasov I. V., Kislyuk A. M., Kuts V. V., Malinkovich M. D., Parkhomenko Yu. N., Sobolev N. A. Ultra-Sensitive Magnetoelectric Sensors of Magnetic Fields for Biomedical Applications // Nanobiotechnology Reports. 2022. 17. 261-289.

8. Bichurin M., Petrov R., Leontiev V., Semenov G., Sokolov O. Magnetoelectric Current Sensors // Sensors. 2017. 17 (6). 1271.

9. Lu C., Zhou H., Li L., Yang A., Xu C., Ou Z., Wang J., Wang X., Tian F. Split-core magnetoelectric current sensor and wireless current measurement application // Measurement. 2022. 188. 110527.

10. Dong S. Review on piezoelectric, ultrasonic, and magnetoelectric actuators // Journal of Advanced Dielectrics. 2012. 2 (1). 1230001.

11. Sadeghi M., Hojjat Y., Khodaei M. Design, analysis, and optimization of a magnetoelectric actuator using regression modeling, numerical simulation and metaheuristics algorithm // Journal of Materials Science: Materials in Electronics. 2019. 30. 16527-16538.

12. Fang K. Y., Jing W. Q., He Y. F., Zhao Y. C., Fang F. A low-frequency vibration energy harvester employing self-biased magnetoelectric composite // Sensors and Actuators A: Physical. 2021. 332 (1). 113066. DOI: 10.1016/j.sna.2021.113066

13. Narita F., Fox M. A Review on Piezoelectric, Magnetostrictive, and Magnetoelectric Materials and Device Technologies for Energy Harvesting Applications // Advanced Engineering Materials. 2018. 20 (5). 1700743. DOI: 10.1002/adem.201700743


Review

For citations:


Ivasheva E.E., Leontiev V.S., Osipova I.S., Bichurin M.I. Influence of the number of magnetostrictive fibers on the magnetoelectric effect in the structure of PZT-19 / AMAG-225. Title in english. 2024;(3(137)):341-350. (In Russ.) https://doi.org/10.34680/2076-8052.2024.3(137).341-350

Views: 13


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2076-8052 (Print)