Preview

Title in english

Advanced search

Formation of inter-device isolation in gallium nitride heterostructures on silicon

https://doi.org/10.34680/2076-8052.2023.1(130).22-33

Abstract

Various methods of forming inter-device insulation on AlGaN/AlN/GaN heterostructures grown on silicon substrates are considered. Methods of isolation using nitrogen (N+) ion implantation technology and isolation of devices by mesa etching are shown. To assess the resistivity on the surface of AlGaN/AlN/GaN, test structures with ohmic contacts separated by a semiconductor with known dimensions were made. The ohmic contacts were formed by electron-beam sputtering of the Ti/Al/Ni/Au metal system. Mesa insulation was formed by reactive ion etching on a plant equipped with an inductively coupled plasma source in a chlorine-containing medium based on a Cl2/BCl3/Ar gas mixture. The etching was carried out at a power of an inductively coupled plasma source of 40 W and a high-frequency power of 80 W through a photoresist mask. The specific surface resistance after mesa etching was 5.5•108ohms/sec. However, there are disadvantages of the mesa etching process associated with ion bombarding of the surfaces and the profile of the side walls. An alternative method of manufacturing inter-device insulation is ion implantation. The technology of planar ion implantation avoids the contact of the gate with a layer of two-dimensional electron gas on the side walls of the mesa, which leads to stable operation of the device. Nitrogen ions (N+) were selected as an implantable impurity for the formation of inter-device isolation by ion implantation. The dose dependences of the specific surface resistance of the inter-device insulation have been investigated. The modes of ion implantation have been established: the energy of the introduced ions is 125 keV, low doses are 3 • 1013 cm-2, the implantation is carried out without the presence of protective dielectric coatings. The insulation resistance obtained by the method of ion implantation of nitrogen N+, when exposed to temperatures in the range from 250 to 350 °C, has consistently high values.

About the Authors

G. M. Bochenkov
Joint Stock Company “OKB-Planeta”
Russian Federation

Bochenkov G.M.,

Veliky Novgorod.



D. G. Fedorov
Joint Stock Company “OKB-Planeta”
Russian Federation

Fedorov D. G.,

Veliky Novgorod.



A. V. Zhelannov
Joint Stock Company “OKB-Planeta”
Russian Federation

Zhelannov A. V.,

Veliky Novgorod



B. I. Seleznev
Yaroslav-the-Wise Novgorod State University
Russian Federation

Seleznev B. I.,

Veliky Novgorod.



References

1. Chuang H., Kao H., Fend Tso C. Sidewall defects of AlGaN/GaN HEMTs evaluated by low frequency noise analysis // Microelectronic Reliability. 2013. 53(12). 1897-1900. DOI: 10.1016/j.microrel.2013.06.015

2. Sharma N., Kumar Dhakad S., Chaturved N., Periasamy C. Refined isolation techniques for GaN-based high electron mobility transistors // Materials Science in Semiconductor Processing. 2018. 87. 195-201. DOI: 10.1016/j.mssp.2018.05.015

3. Kasai H., Ogawa H., Nishimura T., Nakamura T. Nitrogen ion implantation isolation technology for normally-off GaN MISFETs on p-GaN substrate // Physica Status Solidi Current Topics in Solid State Physics. 2014. 11. 3-4. DOI: 10.1002/pssc.201300436

4. Shiu J.-Y., Desmaris V., Huang J.-C., Chang C.-T. Oxygen ion implantation isolation planar process for AlGaN/GaN HEMTs // Electron Device Letters. 2007. 28(6). 476-480. DOI: 10.1109/LED.2007.896904

5. Oishi T., Nanjo T., Miura N., Suita M. Highly resistive GaN layers formed by ion implantation of Zn along the c axis // Journal of Applied Physics. 2003. 94(3). 1662-1666. DOI: 10.1063/1.1590412

6. Boudart B., Guhel Y., Pesant J. Raman characterization of Ar+ ion-implanted GaN // Journal of Raman Spectroscopy. 2002. 33(4). 283-286. DOI: 10.1002/jrs.856

7. Boudart B., Guhel Y., Pesant J. Raman characterization of Mg+ ion-implanted GaN // Journal of Physics: Condensed Matter. 2004. 16(2). 49-53. DOI: 10.1088/0953-8984/16/2/006

8. Jiang Y., Wang Q., Tamai K. Field isolation for GaN MOSFETs on AlGaN/GaN heterostructure with boron ion implantation // Semiconductor Science and Technology. 2014. 29(5). 29-38. DOI: 10.1088/0268-1242/29/5/055002

9. Arulkumaran S., Ranjan K., Ng Geok-Ing, Saw G. Z. Improved device isolation in AlGaN/GaN HEMTs on Si by heavy Kr+ Ion implantation // Device Research Conference. 2nd Device Research Conference. June 22-25. 2014. Santa Barbara (California), The University of California, 2014. 72. 115-120. DOI: 10.1109/DRC.2014.6872324

10. Umeda H., Takizawa T., Anda Y., Ueda T. High-voltage isolation technique using Fe+ implantation for monolithic integration of AlGaN/GaN transistors // Transactions on Electron Devices. 2013. 60(2). 771-775. DOI: 10.1109/TED.2012.2230264

11. Binari S., Dietrich H., Kelner G., Rowland L. B., Doverspike K. H, He, and N implant isolation of n-type GaN // Journal of Applied Physics. 1995. 78(5). 78-84. DOI: 10.1063/1.360712

12. Johra F. Effect of light-ions implantation on resistivity of GaN thin film // Electronic Materials Letters. 2014. 10(4). 699-707. DOI: 10.1007/s13391-013-3160-9

13. Zhelannov A. V., Ionov A. S., Petrov A. V., Seleznev B. I. Ispol'zovanie tekhnologii mikroprofilirovaniya pri formirovanii pribornyh struktur na osnove nitrida galliya [The use of microprofiling technology in the formation of device structures based on gallium nitride] // Nano- and microsystems technology. 2017. 19(7). 399-403. DOI: 10.17587/nmst.19.399-405

14. Egorkin V. I., Obolensky S. V., Zemlyakov V. E., Zaitsev A. A., Garmash V. I. Issledovanie ionnoj implantacii azota cherez sloj nitrida kremniya dlya mezhpribornoj izolyacii GaN/Si- tranzistorov [The investigation of ion implantation of nitrogen through a layer of silicon nitride for inter-device isolation of GaN/Si transistors] // Applied Physics Letters. 2021. 47(18). 15-17. DOI: 10.21883/PJTF.2021.18.51465.18805


Review

For citations:


Bochenkov G.M., Fedorov D.G., Zhelannov A.V., Seleznev B.I. Formation of inter-device isolation in gallium nitride heterostructures on silicon. Title in english. 2023;(1(130)):22-33. (In Russ.) https://doi.org/10.34680/2076-8052.2023.1(130).22-33

Views: 57


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2076-8052 (Print)