Formation of inter-device isolation in gallium nitride heterostructures on silicon
https://doi.org/10.34680/2076-8052.2023.1(130).22-33
Abstract
Various methods of forming inter-device insulation on AlGaN/AlN/GaN heterostructures grown on silicon substrates are considered. Methods of isolation using nitrogen (N+) ion implantation technology and isolation of devices by mesa etching are shown. To assess the resistivity on the surface of AlGaN/AlN/GaN, test structures with ohmic contacts separated by a semiconductor with known dimensions were made. The ohmic contacts were formed by electron-beam sputtering of the Ti/Al/Ni/Au metal system. Mesa insulation was formed by reactive ion etching on a plant equipped with an inductively coupled plasma source in a chlorine-containing medium based on a Cl2/BCl3/Ar gas mixture. The etching was carried out at a power of an inductively coupled plasma source of 40 W and a high-frequency power of 80 W through a photoresist mask. The specific surface resistance after mesa etching was 5.5•108ohms/sec. However, there are disadvantages of the mesa etching process associated with ion bombarding of the surfaces and the profile of the side walls. An alternative method of manufacturing inter-device insulation is ion implantation. The technology of planar ion implantation avoids the contact of the gate with a layer of two-dimensional electron gas on the side walls of the mesa, which leads to stable operation of the device. Nitrogen ions (N+) were selected as an implantable impurity for the formation of inter-device isolation by ion implantation. The dose dependences of the specific surface resistance of the inter-device insulation have been investigated. The modes of ion implantation have been established: the energy of the introduced ions is 125 keV, low doses are 3 • 1013 cm-2, the implantation is carried out without the presence of protective dielectric coatings. The insulation resistance obtained by the method of ion implantation of nitrogen N+, when exposed to temperatures in the range from 250 to 350 °C, has consistently high values.
About the Authors
G. M. BochenkovRussian Federation
Bochenkov G.M.,
Veliky Novgorod.
D. G. Fedorov
Russian Federation
Fedorov D. G.,
Veliky Novgorod.
A. V. Zhelannov
Russian Federation
Zhelannov A. V.,
Veliky Novgorod
B. I. Seleznev
Russian Federation
Seleznev B. I.,
Veliky Novgorod.
References
1. Chuang H., Kao H., Fend Tso C. Sidewall defects of AlGaN/GaN HEMTs evaluated by low frequency noise analysis // Microelectronic Reliability. 2013. 53(12). 1897-1900. DOI: 10.1016/j.microrel.2013.06.015
2. Sharma N., Kumar Dhakad S., Chaturved N., Periasamy C. Refined isolation techniques for GaN-based high electron mobility transistors // Materials Science in Semiconductor Processing. 2018. 87. 195-201. DOI: 10.1016/j.mssp.2018.05.015
3. Kasai H., Ogawa H., Nishimura T., Nakamura T. Nitrogen ion implantation isolation technology for normally-off GaN MISFETs on p-GaN substrate // Physica Status Solidi Current Topics in Solid State Physics. 2014. 11. 3-4. DOI: 10.1002/pssc.201300436
4. Shiu J.-Y., Desmaris V., Huang J.-C., Chang C.-T. Oxygen ion implantation isolation planar process for AlGaN/GaN HEMTs // Electron Device Letters. 2007. 28(6). 476-480. DOI: 10.1109/LED.2007.896904
5. Oishi T., Nanjo T., Miura N., Suita M. Highly resistive GaN layers formed by ion implantation of Zn along the c axis // Journal of Applied Physics. 2003. 94(3). 1662-1666. DOI: 10.1063/1.1590412
6. Boudart B., Guhel Y., Pesant J. Raman characterization of Ar+ ion-implanted GaN // Journal of Raman Spectroscopy. 2002. 33(4). 283-286. DOI: 10.1002/jrs.856
7. Boudart B., Guhel Y., Pesant J. Raman characterization of Mg+ ion-implanted GaN // Journal of Physics: Condensed Matter. 2004. 16(2). 49-53. DOI: 10.1088/0953-8984/16/2/006
8. Jiang Y., Wang Q., Tamai K. Field isolation for GaN MOSFETs on AlGaN/GaN heterostructure with boron ion implantation // Semiconductor Science and Technology. 2014. 29(5). 29-38. DOI: 10.1088/0268-1242/29/5/055002
9. Arulkumaran S., Ranjan K., Ng Geok-Ing, Saw G. Z. Improved device isolation in AlGaN/GaN HEMTs on Si by heavy Kr+ Ion implantation // Device Research Conference. 2nd Device Research Conference. June 22-25. 2014. Santa Barbara (California), The University of California, 2014. 72. 115-120. DOI: 10.1109/DRC.2014.6872324
10. Umeda H., Takizawa T., Anda Y., Ueda T. High-voltage isolation technique using Fe+ implantation for monolithic integration of AlGaN/GaN transistors // Transactions on Electron Devices. 2013. 60(2). 771-775. DOI: 10.1109/TED.2012.2230264
11. Binari S., Dietrich H., Kelner G., Rowland L. B., Doverspike K. H, He, and N implant isolation of n-type GaN // Journal of Applied Physics. 1995. 78(5). 78-84. DOI: 10.1063/1.360712
12. Johra F. Effect of light-ions implantation on resistivity of GaN thin film // Electronic Materials Letters. 2014. 10(4). 699-707. DOI: 10.1007/s13391-013-3160-9
13. Zhelannov A. V., Ionov A. S., Petrov A. V., Seleznev B. I. Ispol'zovanie tekhnologii mikroprofilirovaniya pri formirovanii pribornyh struktur na osnove nitrida galliya [The use of microprofiling technology in the formation of device structures based on gallium nitride] // Nano- and microsystems technology. 2017. 19(7). 399-403. DOI: 10.17587/nmst.19.399-405
14. Egorkin V. I., Obolensky S. V., Zemlyakov V. E., Zaitsev A. A., Garmash V. I. Issledovanie ionnoj implantacii azota cherez sloj nitrida kremniya dlya mezhpribornoj izolyacii GaN/Si- tranzistorov [The investigation of ion implantation of nitrogen through a layer of silicon nitride for inter-device isolation of GaN/Si transistors] // Applied Physics Letters. 2021. 47(18). 15-17. DOI: 10.21883/PJTF.2021.18.51465.18805
Review
For citations:
Bochenkov G.M., Fedorov D.G., Zhelannov A.V., Seleznev B.I. Formation of inter-device isolation in gallium nitride heterostructures on silicon. Title in english. 2023;(1(130)):22-33. (In Russ.) https://doi.org/10.34680/2076-8052.2023.1(130).22-33