Preview

Title in english

Advanced search

Nanoporous membranes based on aluminum oxide for homogenization of a liposomal solution

https://doi.org/10.34680/2076-8052.2023.1(130).9-21

Abstract

The production of liposomal preparations involves the production and reduction of liposomes to sizes ranging from 50 to 200 nm. For these purposes, either the method of sonicating the liposomal solution or its extrusion is used. When using the sonication method, particles with a size of about 200 nm are obtained. At the same time, the extrusion method makes it possible to obtain particles of any size within a given range. The size of the homogenized liposomes is determined by the geometric characteristics of the membrane through which the liposomes pass. The article considers a method for obtaining membranes based on porous anodized alumina and the possibility of using them for homogenization of liposomes. The membranes obtained during the work were anodized in an oxalic acid-based electrolyte in a potentiostatic mode at low temperatures. The layers of barrier aluminum oxide and pure aluminum, covering the reverse side of the pores, were removed by chemical etching in a solution of phosphoric acid and a saturated solution of copper chloride, respectively. As a result, aluminum oxide membranes with a pore diameter of ~100 nm and a thickness of ~100 µm were obtained. The experimental data on the thickness parameters were confirmed by theoretical calculations.

About the Authors

I. E. Anufriev
Saint Petersburg Electrotechnical University "LETI"
Russian Federation

Anufriev I. E.,

Saint Petersburg.

 



E. N. Muratova
Saint Petersburg Electrotechnical University "LETI"
Russian Federation

Muratova E. N.,

Saint Petersburg.



R. G. Valeev
Udmurt Federal Research Center of the Ural Branch of the RAS
Russian Federation

Valeev R.G., 

Izhevsk.



D. V. Korolev
Almazov National Medical Research Centre of the Ministry of Health of the RF
Russian Federation

Korolev D.V.,

Saint Petersburg.



V. M. Kondratiev
Alferov Saint Petersburg National Research Academic University of the RAS
Russian Federation

Kondratiev V.M.,

Saint Petersburg.



V. A. Moshnikov
Saint Petersburg Electrotechnical University "LETI"
Russian Federation

Moshnikov V.A.,

Saint Petersburg.



References

1. Nobuto H., Sugita T., Kubo T., Shimose Sh., Yasunaga Y., Murakami T., Ochi M. Evaluation of systemic chemotherapy with magnetic liposomal doxorubicin and a dipole external electromagnet // International Journal of Cancer. 2004. 109. 627-635. DOI: 10.1002/ijc.20035

2. Svistelnik A. V., Khanin A. L. Liposomal'nyye lekarstvennyye preparaty: vozmozhnosti i perspektivy [Liposomal drugs: opportunities and prospects] // Medicine in Kuzbass. 2014. 13(2). 7-16.

3. Yuan F., Dellian M., Fukumura D., Leunig M., Berk D. A., Torchilin V. P., Jain R. K. Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size // Cancer Research. 1995. 55. 3752-3756.

4. Kurunov Yu. N., Ursov I. G., Krasnov V. A. Effektivnost' liposomal'noy lekarstvennoy formy antibakterial'nykh preparatov v ingalyatsionnoy terapii eksperimental'nogo tuberkuleza [Effectiveness of liposomal dosage form of antibacterial drugs in inhalation therapy of experimental tuberculosis] // Problems of Tuberculosis. 1995. 72(1). 38-40.

5. Blagbrough I. S., Zara C. Animal Animal Models for Target Diseases in Gene Therapy – using DNA and siRNA delivery strategies // Pharmaceutical Research. 2008. 26. 1-18.

6. Jin C. S., Zheng G. Liposomal nanostructures for photosensitizer delivery // Lasers in Surgery and Medicine. 2011. 43(7). 734-748. DOI: 10.1002/lsm.21101

7. Barsukov L. I. Liposomy [Liposomes] // Soros Educational Journal. 1998. 10. 2-9.

8. Jesorka A., Orwar O. Liposomes: technologies and analytical application // Annual reviews of analytical chemistry. 2008. 1. 801-832. DOI: 10.1146/annurev.anchem.1.031207.112747

9. Novikova A. A., Kezimana P., Stanishevsky Ya. M. Metody polucheniya liposom, ispol'zuyemykh v kachestve nositeley lekarstvennykh sredstv (obzor) [Methods for obtaining liposomes used as drug carriers (review)] // Drug development & registration. 2017. 2(19). 134-138.

10. Shah V. M., Nguyen D. X., Patel P., Cote B., Al-Fatease A., Pham Y., Huynh M. G., Woo Y., Alani A. WG. Liposomes produced by microfluidics and extrusion: A comparison for scale-up purposes // Nanomedicine. 2019. 18. 146-156. DOI: 10.1016/j.nano.2019.02.019

11. Mui B. L., Cullis P. R., Evans E. A., Madden T. D. Osmotic properties of large unilamellar vesicles prepared by extrusion // Biophysical journal. 1993. 64(2). 443-453. DOI: 10.1016/S0006-3495(93)81385-7

12. Cho N. J., Hwang L. Y., Solandt J. J. R., Frank C. W. Comparison of Extruded and Sonicated Vesicles for Planar Bilayer Self-Assembly // Мaterials. 2013. 6(8). 3294-3308. DOI: 10.3390/ma6083294

13. Dmitrieva M. V., Lugen B., Oborotova N. A., Krasnyuk I. I., Krasnyuk I. I. (jr.), Belyackaya A. V., Stepanova O. I., Bokov D. O., Naryshkin S. R., Mazyarkin E. V. Metod ekstruzii v tekhnologii polucheniya liposom [Method of extrusion in the technology of obtaining liposomes] // Proceedings of Voronezh State University. Series: Chemistry. Biology. Pharmacy. 2020. 3. 87-94.

14. Valeev R., Vakhrushev A., Fedotov A., Petukhov D. Nanostructured Semiconductors in Porous Alumina Matrices: Modeling, Synthesis, and Properties. New York: Apple Academic Press, 2019. 284 p. DOI: 10.1201/978042939814

15. Aleshin A. N., Belorus A. O., Vrublevskij I. A., Istomina M. S., Kondrat'ev V. M., Korolev D. V., Maksimov A. I., Moshnikov V. A., Muratova E. N., Nalimova S. S., Puhova V. M., Ryzhov O. A., Semenova A. A., Smerdov R. S., Spivak Yu. M., Chernyakova E. V. Nanoparticles, nanosystems and their application. Sensory, energy, diagnostics: monograph. St. Petersburg, "LETI" Publ., 2020. 273 p.

16. Zimina T. M., Solov'ev A. V., Luchinin V. V., Mupatova E. N., Kpaeva L. A., Hamdulaeva G. N. Printsipy sozdaniya gibridnykh miniatyurnykh priborov dlya vyrashchivaniya koloniy mikrobnykh kletok na osnove poristogo anodnogo oksida alyuminiya [Principles of creating hybrid miniature devices for growing colonies of microbial cells based on porous anodic aluminum oxide] // Nano- and Microsystems Technology. 2013. 12. 19-33.

17. Muratova E. N., Luchinin V. V., Moshnikov V. A., Lifshic V. A., Matyushkin L. B., Panov M. F., Potrahov N. N., Galunin S. A., Ishin V. V., Shemuhin A. A. Osobennosti formirovaniya svobodnykh nanorazmernykh poristykh membran oksida alyuminiya iz fol'gi i novyye oblasti primeneniya [Features of the formation of free nanosized porous membranes of aluminum oxide from foil and new areas of application] // Glass Physics and Chemistry. 2017. 43(2). 207-215. DOI: 10.1134/S1087659617020122

18. New nanomaterials. Synthesis. Diagnostics. Modeling: laboratory workshop. Eds. Moshnikov V. A., Alexandrova O. A. St. Petersburg, Saint Petersburg Electrotechnical University "LETI" Publ., 2015, 248 p.

19. Nanostructured oxide materials in modern micro-, nano- and optoelectronics: monograph. Eds. Moshnikov V. A., Alexandrova O. A. St. Petersburg, Saint Petersburg Electrotechnical University "LETI" Publ., 2017. 266 p.

20. Chernyakova K. V., Muratova E. N., Vrublevsky I. A., Lushpa N. V., Spivak Yu. M., Nalimova S. S., Moshnikov V. A. Influence of Electrolyte Temperature on the Formation of the Morphology of the Porous Structure of Anodic Aluminum Oxide // Glass Physics and Chemistry. 2021. 47(6). 630-634. DOI: 10.1134/S1087659621060043

21. Petukhov D. I., Valeev R. G., Reshetnikov S. M. Poristyye anodnyye oksidy alyuminiya i titana: struktura, svoystva, sintez: uchebnoye posobiye [Porous anodic aluminum and titanium oxides: structure, properties, synthesis: Textbook]. Izhevsk: Udmurt University Publ., 2018. 122 p.

22. Sokol V. A. Osobennosti rosta poristogo oksida alyuminiya [Peculiarities of the growth of porous aluminum oxide] // Doklady BGUIR. 2003. 1(1). 75-82.

23. Sakovich G. G. Oksidirovaniye alyuminiya: metodicheskiye rekomendatsii k vypolneniyu laboratornoy raboty po kursu «Khimicheskoye soprotivleniye i zashchita ot korrozii» dlya studentov spetsial'nostey 15.03.02, 18.05.01 vsekh form obucheniya [Aluminum oxidation: guidelines for laboratory work on the course "Chemical resistance and corrosion protection" for students of specialties 15.03.02, 18.05.01 of all forms of education]. Biysk: Altai State Technical University Publ., 2014. 21 p.


Review

For citations:


Anufriev I.E., Muratova E.N., Valeev R.G., Korolev D.V., Kondratiev V.M., Moshnikov V.A. Nanoporous membranes based on aluminum oxide for homogenization of a liposomal solution. Title in english. 2023;(1(130)):9-21. (In Russ.) https://doi.org/10.34680/2076-8052.2023.1(130).9-21

Views: 60


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2076-8052 (Print)