Development of software for a radar with a virtual antenna array on the Digilent Zedboard platform
https://doi.org/10.34680/2076-8052.2023.5(134).847-857
Abstract
MIMO technology allows you to create virtual antenna arrays, significantly reducing the number of receiving and transmitting channels compared to classical phased antenna arrays (PAA). At the same time, the characteristics of the antenna system (width of the radiation pattern, gain factor) and, as a result, the characteristics of the radar (angular resolution, detection range) are preserved. Reducing the number of receiving and transmitting channels leads to a significant reduction in the cost of the radar as a whole. The article describes the process of developing a mathematical model and signal processing software based on the Digilent Zedboard platform. The results of modeling and testing of the hardware and software implementation of the processing algorithm are presented. The degree of loading of the Xilinx Zynq XC7Z020 crystal standing on the Digilent Zedboard platform is estimated.
About the Authors
D. V. ShakhovRussian Federation
Veliky Novgorod
I. N. Zhukova
Russian Federation
Veliky Novgorod
N. E. Bystrov
Russian Federation
Veliky Novgorod
References
1. Fishler E., Haimovich A., Blum R., Chizhik D., Cimini L., Valenzuela R. MIMO radar: An idea whose time has come // Proceedings of the IEEE Radar Conference, 26–29 April 2004. Philadelphia, 2004. P. 71-78. DOI: 10.1109/NRC.2004.1316398
2. Forsyte K. W., Bliss D. W., Fawsett G. S. Multiple-input multiple output (MIMO) radar: Performance issues // Conference Record of the Thirty-Eight Asilomar Conference on Signals, Systems and Computers 2004, 7–10 Nov. Pacific Grove (CA), 2004. 1. 310-315. DOI: 10.1109/ACSSC.2004.1399143
3. Chapurskii V. V. Funktsii neopredelennosti i prostranstvennaia razreshaiushchaia sposobnost' sverkhshirokopolosnykh videoimpul'snykh antennykh reshetok [Uncertainty functions and spatial resolution of ultra wideband video pulse array antennas] // Herald of the Bauman Moscow State Technical University. Series Instrument Engineering. 2005. 4. 94-108.
4. Chapurskii V. V. Obrabotka signalov v mnogochastotnykh radiolokatsionnykh sistemakh v antennami iz prostranstvenno-raspredelennykh peredaiushchikh i priemnykh elementov [Signal processing in multi-frequency radiolocation systems having antennae with spatially distributed transmitting and receiving elements] // Herald of the Bauman Moscow State Technical University. Series Instrument Engineering. 2008. 3. 69-79.
5. Cherniak V. S. Mnogopozitsionnaia radiolokatsiia [Multilevel radiolocation]. Moscow, Radio i sviaz' Publ., 1993. 415 p.
6. Lesturgie M. Some relevant applications of MIMO to radar // IEEE Proceedings of the 2011 12th International Symposium on Radar (IRS), September 7-9, 2011. Leipzig, Germany, 2011. P.714-721.
7. Martinez-Vazquez A., Fortuny-Guasch J. UWB MIMO radar arrays for small area surveillance applications // 2nd European Conference on Antennas and Propagation (EuCAP 2007), 11-16 Nov. 2007. Edinburgh, UK, 2007. P. 1-6. DOI: 10.1049/ic.2007.1076
8. Anderson S., Anderson W. A MIMO technique for enhanced clutter selectivity in a multiple scattering environment: Application to HF surface wave radar // International Conference on Electromagnetics in Advanced Applications, 20-24 September 2010. Sydney, Australia, 2010. P. 133-136. DOI: 10.1109/ICEAA.2010.5652215
9. Kim J.-H., Ossowska A., Wiesbeck W. Investigation of MIMO SAR for interferometry // European Radar Conference, 10-12 October 2007. Munich, Germany, 2007. P. 51-54. DOI: 10.1109/EURAD
10. Pancera E., Zwick T., Wiesbeck W. Ultra wideband radar imaging: An approach to monitor the water accumulation in the human body // IEEE International Conference on Wireless Information Technology and Systems, 28 August 2010-03 September. Honolulu, USA, 2010. P. 1-4. DOI: 10.1109/ICWITS.2010.5611899
11. Lutz S., Baur K., Walter T. 77 GHz lens-based multistatic MIMO radar with collocated antennas for automotive applications // IEEE/MTT-S International Microwave Symposium Digest, 17-22 June 2012. Montreal, Canada, 2012. P. 1-3. DOI: 10.1109/MWSYM.2012.6259526
12. Schuler K., Younis M., Lenz R., Wiesbeck W. Array design for automotive digital beamforming radar system // IEEE International Radar Conference, 09-12 May 2005. Arlington, USA, 2005. P. 435-440. DOI: 10.1109/RADAR.2005.1435864
13. Li J., Stoica P. MIMO radar with colocated antennas // IEEE Signal Processing Magazine. 2007. 24(5). 106-114. DOI: 10.1109/MSP.2007.904812
14. Shakhov D. V., Kriukov D. V. Obrabotka signalov pri rabote RLS po tekhnologii MIMO [Signal processing in MIMO radar] // Dni nauki i innovatsii NovGU: materialy XXVIII nauchnoi konferentsii prepodavatelei, aspirantov i studentov NovGU [Proc. 28th Sci. Conf. of Academicians and Students “Science and Innovation Days at NovSU”]. In 2 vols. Vol. 2, Veliky Novgorod, NovSU Publ., 2021. P. 286-292. DOI: 10.34680/978-5-89896-757-4/2021.DN-2.49
15. Zhu Y., Su Y., Yu W. An ISAR Imaging Method Based on MIMO Technique // IEEE Transactions on Geoscience and Remote Sensing. 2010. 48(8). 3290-3299. DOI: 10.1109/TGRS.2010.2045230
16. Kalachev A. Mnogoiadernaia konfiguriruemaia vychislitel'naia platforma Zynq-7000 [Zynq-7000 multicore configurable computing platform] // Sovremennaia elektronika. 2013. 1. 22-31.
Review
For citations:
Shakhov D.V., Zhukova I.N., Bystrov N.E. Development of software for a radar with a virtual antenna array on the Digilent Zedboard platform. Title in english. 2023;(5(134)):847-857. (In Russ.) https://doi.org/10.34680/2076-8052.2023.5(134).847-857