Preview

Title in english

Advanced search

Magnetostrictive phase influence on multicaloric effect in magnetostrictive-ferroelectric composite

https://doi.org/10.34680/2076-8052.2023.5(134).807-814

Abstract

 The ferroelectric volume fraction dependence of the multicaloric effect in a bilayer of barium titanate and cobalt ferrite was studied using the Landau-Ginzburg thermodynamic approach. It is shown that the electrocaloric effect can be controlled using the volume fraction of the ferroelectric. Magnetic field application is an effective tool to enhance the multicaloric effect in a magnetostrictive-ferroelectric structure. The choice of an optimal magnetic component which has a magnetocaloric effect in the appropriate temperature range and enables generating the necessary mechanical stress in ferroelectric layer, will increase the multicaloric effect in a bilayer. 

About the Authors

V. M. Petrov
Yaroslav-the-Wise Novgorod State University
Russian Federation

 Veliky Novgorod 



A. F. Saplev
Yaroslav-the-Wise Novgorod State University
Russian Federation

 Veliky Novgorod 



V. V. Gavrushko
Yaroslav-the-Wise Novgorod State University
Russian Federation

 Veliky Novgorod 



References

1. De Oliveira N. A., von Ranke P. J. Theoretical aspects of the magnetocaloric effect // Physics Reports. 2010. 489(4/5). 89-159. DOI: 10.1016/j.physrep.2009.12.006

2. Planes A., Castán T., Saxena A. Thermodynamics of multicaloric effects in multiferroic materials: application to metamagnetic shape-memory alloys and ferrotoroidics // Philosophical Transactions of The Royal Society A Mathematical Physical and Engineering Sciences. 2016. 374(2074). 20150304. DOI: 10.1098/rsta.2015.0304

3. Hou H., Qian S., Takeuchi I. Materials, physics and systems for multicaloric cooling // Nature Reviews Materials. 2022. 7. 633-652. DOI: 10.1038/s41578-022-00428-x

4. Hao J.-Z., Hu F.-X., Yu Z.-B., Shen F.-R., Zhou H.-B., Gao Y.-H., Qiao K.-M., Li J., Zhang C., Liang W.-H., Wang J., He J., Sun J.-R., Shen B.-G. Multicaloric and coupled-caloric effects // Chinese Physics B. 2020. 29(4). 047504. DOI: 10.1088/1674-1056/ab7da7

5. Vopson M. M. The multicaloric effect in multiferroic materials // Solid State Communications. 2012. 152(23). 2067-2070. DOI: 10.1016/j.ssc.2012.08.016

6. Electrocaloric Materials. Springer, Berlin, 2014. 253 p.

7. Starkov A. S., Starkov I. A. Multicaloric effect in a solid: New aspects // Journal of Experimental and Theoretical Physics. 2014. 119(2). 258-263. DOI: 10.1134/S1063776114070097

8. Cui J., Wu Y., Muehlbauer J., Hwang Y., Radermacher R., Fackler S., Wuttig M., Takeuchi I. Demonstration of high efficiency elastocaloric cooling with large ΔT using NiTi wires // Applied Physics Letters. 2012. 101(7). 073904. DOI: 10.1063/1.4746257

9. Bechtold C., Chluba C., Lima de Miranda R., Quandt E. High cyclic stability of the elastocaloric effect in sputtered TiNiCu shape memory films // Applied Physics Letters. 2012. 101(9). 091903. DOI: 10.1063/1.4748307

10. Ma˜nosa L., Jarque-Farnos S., Vives E., Planes A. Large temperature span and giant refrigerant capacity in elastocaloric Cu-Zn-Al shape memory alloys // Applied Physics Letters. 2013. 103(21). 211904. DOI: 10.1063/1.4832339

11. Lisenkov S., Mani B. K., Chang C.-M., Almand J., Ponomarev I. Multicaloric effect in ferroelectric PbTiO3 from first principles // Physical review. B, Condensed matter. 2013. B 87(22). 224101. DOI: 10.1103/PhysRevB.87.224101

12. Es`kov A. V., Anokhin A. S., Pakhomov O. V., Semenov A. Multiferroic properties of barium strontium titanate ceramics doped with gadolinium and iron // Ferroelectrics. 2021. 574(1). 109-114. DOI: 10.1080/00150193.2021.1888054 13. Sokolovskiy R. R., Fayzullin V. D., Buchelnikov S. V., Taskaev S., Drobosyuk M., Khovaylo V. Theoretical treatment and direct measurements of magnetocaloric effect in Ni2.19-xFexMn0.81Ga Heusler alloys // Journal of Magnetism and Magnetic Materials. 2013. 343. 6-12. DOI: 10.1016/j.jmmm.2013.04.069

13. Bichurin M., Petrov V., Zakharov A., Kovalenko D., Yang S. C., Maurya D., Bedekar V., Priya S. Magnetoelectric Interactions in Lead-Based and Lead-Free Composites // Materials. 2011. 4(4). 651-702. DOI: 10.3390/ma4040651

14. Xiao F., Fukuda T., Kakeshita T. Significant elastocaloric effect in a Fe-31.2Pd (at. %) single crystal // Applied Physics Letters. 2013. 102(16). 161914. DOI: 10.1063/1.4803168

15. Liu Y., Infante I. C., Lou X. J., Bellaiche L., Scott J. F., Dkhil B. Giant roomtemperature elastocaloric effect in ferroelectric ultrathin films // Advanced Materials. 2014. 26(35). 6132-6137. DOI: 10.1002/adma.201401935


Review

For citations:


Petrov V.M., Saplev A.F., Gavrushko V.V. Magnetostrictive phase influence on multicaloric effect in magnetostrictive-ferroelectric composite. Title in english. 2023;(5(134)):807-814. (In Russ.) https://doi.org/10.34680/2076-8052.2023.5(134).807-814

Views: 28


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2076-8052 (Print)