Influence of interlayer mechanical coupling in multiferroic on multicaloric effect
https://doi.org/10.34680/2076-8052.2023.5(134).800-806
Abstract
The influence of uniaxial compression on the electrocaloric effect in a barium titanate-based bilayer was studied using the Landau-Ginzburg thermodynamic approach. Barium titanate was used as a model material. It was shown that the electrocaloric effect can be controlled by uniaxial compression. Application of compressive stress is an effective approach to enhance the electrocaloric effect in ferroelectric ceramics. The compressive stress in the considered magnetostrictive-ferroelectric bilayer is a result of mechanical coupling between ferroelectric and magnetostrictive phases.
About the Authors
V. M. PetrovRussian Federation
Veliky Novgorod
V. A. Karachinov
Russian Federation
Veliky Novgorod
V. V. Gavrushko
Russian Federation
Veliky Novgorod
References
1. Electrocaloric Materials / Editors T. Correia, Qi Zhang. Springer, Berlin, 2014. 243 p.
2. Es’kov A., Anokhin A., Pakhomov O., Semenov A., Fadeev E., Dedyk A., Kholkin A., Tselev A., Baranov I. V., Lähderanta E. Multiferroic properties of barium strontium titanate ceramics doped with gadolinium and iron // Ferroelectrics. 2021. 574(1). 109-114. DOI: 10.1080/00150193.2021.1888054
3. Starkov A. S., Starkov I. A. Multicaloric effect in a solid: New aspects // Journal of Experimental and Theoretical Physics. 2014. 119(2). 258-263. DOI: 10.1134/S1063776114070097
4. Sokolovskiy V., Fayzullin R., Buchelnikov V. D., Droboseuk M. Theoretical treatment and direct measurements of magnetocaloric effect in Ni2.19-xFexMn0.81Ga Heusler alloys // Journal of Magnetism and Magnetic Materials. 2013. 343. 6-12. DOI: 10.1016/j.jmmm.2013.04.069
5. Xiao F., Fukuda T., Kakeshita T. Significant elastocaloric effect in a Fe-31.2Pd (at. %) single crystal // Applied Physics Letters. 2013. 102. 161914. DOI: 10.1063/1.4803168
6. Cui J., Wu Y., Muehlbauer J., Hwang Y., Radermacher R., Fackler S., Wuttig M., Takeuchi I. Demonstration of high efficiency elastocaloric cooling with large ΔT using NiTi wires // Applied Physics Letters. 2012. 101. 073904. DOI: 10.1063/1.4746257
7. Bechtold C., Chluba C., Lima de Miranda R., Quandt E. High cyclic stability of the elastocaloric effect in sputtered TiNiCu shape memory films // Applied Physics Letters. 2012. 101. 091903. DOI: 10.1063/1.4748307
8. Ma˜nosa L., Jarque-Farnos S., Vives E., Planes A. Large temperature span and giant refrigerant capacity in elastocaloric Cu-Zn-Al shape memory alloys // Applied Physics Letters. 2013. 103. 211904. DOI: 10.1063/1.4832339
9. Lisenkov S., Ponomareva I. Giant elastocaloric effect in ferroelectric Ba0.5Sr0.5TiO3 alloys from first-principles // Physical Review. 2012. B 86. 104103. DOI: 10.1103/PhysRevB.86.104103
10. Lisenkov S., Mani B. K., Chang C.-M., Almand J., Ponomareva I. Multicaloric effect in ferroelectric PbTiO3 from first principles // Physical Review. 2013. B 87. 224101. DOI: 10.1103/PhysRevB.87.224101
11. Liu Y., Infante I. C., Lou X. J., Bellaiche L., Scott J. F., Dkhil B. Giant roomtemperature elastocaloric effect in ferroelectric ultrathin films // Advanced Materials. 2014. 26(35). 6132-5137. DOI: 10.1002/adma.201401935
12. Bichurin M., Petrov V., Zakharov A., Kovalenko D., Chul Yang S., Maurya D., Bedekar V., Priya S. Magnetoelectric Interactions in Lead-Based and Lead-Free Composites // Materials. 2011. 4(4). 651-702. DOI: 10.3390/ma4040651
13. Bichurin M. I., Petrov V. M. Modeling of Magnetoelectric Effects in Composites. Springer Dordrecht, 2014. 108 p.
14. Wang X. X., Tang X. G., Chan H. L. Electromechanical and ferroelectric properties of (Bi1∕2Na1∕2)TiO3–(Bi1∕2K1∕2)TiO3–BaTiO3 lead-free piezoelectric ceramics // Applied Physics Letters. 2004. 85. 91-93. DOI: 10.1063/1.1767592
Review
For citations:
Petrov V.M., Karachinov V.A., Gavrushko V.V. Influence of interlayer mechanical coupling in multiferroic on multicaloric effect. Title in english. 2023;(5(134)):800-806. (In Russ.) https://doi.org/10.34680/2076-8052.2023.5(134).800-806