Magnetoelectric harvester in the magnetocardiograph system
https://doi.org/10.34680/2076-8052.2023.5(134).780-787
Abstract
In this work, a magnetoelectric harvester for biomedicine based on the AMAG-PZTS magnetostrictive-piezoelectric composite structure is investigated. The intense development of modern electronics leads to a comprehensive theoretical and experimental study of new materials in which the connection between their magnetic and electrical properties is manifested, namely the magnetoelectric effect (ME).The ME harvester for biomedicine, connected in parallel to the ME sensor, is part of a full-fledged highly sensitive device for magnetocardiography and acts as a backup power source, collecting and storing energy to power the generator which is a source of alternating magnetic field for the ME magnetic field sensor. An experimental study of the ME effect in the magnetostrictive-piezoelectric composite structure of the harvester was carried out, and the dependences of the output voltage and ME coefficient of the composite structure on frequency were obtained.
About the Authors
V. N. LobekinRussian Federation
Veliky Novgorod
E. E. Ivasheva
Russian Federation
Veliky Novgorod
R. G. Kafarov
Russian Federation
Veliky Novgorod
V. A. Karachinov
Russian Federation
Veliky Novgorod
A. G. Kondrashov
Russian Federation
Veliky Novgorod
M. I. Bichurin
Russian Federation
Veliky Novgorod
References
1. Li Y., Cheng H., Alhalili Z., Xu G., Gao G. The progress of magnetic sensor applied in biomedicine: A review of non-invasive techniques and sensors // Journal Chinese Chemical Society Taipei. 2021. 68(24). 216-227. DOI: 10.1002/jccs.202000353
2. Bichurin M., Petrov R., Sokolov O., Leontiev V., Kuts V., Kiselev D., Wang Y. Magnetoelectric Magnetic Field Sensors: A Review // Sensors. 2021. 21(18). 6232. DOI: 10.3390/s21186232
3. Wang P., Liu Q. Biomedical Sensors and Measurement. Advanced Topics in Science and Technology in China. Berlin Heidelberg: Springer-Verlag, 2011. 300 p. DOI: 10.1007/978-3-642-19525-9
4. Leontiev V. S., Lobekin V. N., Saplev A. F., Ivasheva E. E., Zueva E. A., Bichurin M. I. Application of magnetoelectric sensors in biomedicine // Journal of Physics: Conference Series. 2021. 2052. 012022. DOI: 10.1088/1742-6596/2052/1/012022
5. Lobekin V. N. Magnitoelektricheskii magnitokardiograf [Magnetoelectric magnetocardiograph] // Sbornik tezisov, materialy Dvadtsat' shestoi Vserossiiskoi nauchnoi konferentsii studentov-fizikov i molodykh uchenykh (VNKSF-26.2) [Proc. 26th All-Russian Sci. Conf. of Physics Students and Young Scientists (VNKSF-26.2)]. In 2 vols. Vol. 2. Rostov-on–Don, 2022. P. 51-52.
6. Jahns R., Knöchel R., Greve H., Woltermann E., Lage E., Quandt E. Magnetoelectric sensors for biomagnetic measurements // IEEE International Symposium on Medical Measurements and Applications, 30-31 May 2011. Bari, Italy, 2011. P. 107-110. DOI: 10.1109/MEMEA.2011.5966676
7. Reermann J., Durdaut P., Salzer S., Demming T., Piorra A., Quandt E., Frey N., Höft M., Schmidt G. Evaluation of magnetoelectric sensor systems for cardiological applications // Measurement. 2018. 116. 230238. DOI: 10.1016/j.measurement.2017.09.047
8. Alia F., Razab W., Lic X., Guld H., Kime K.-H. Piezoelectric Energy Harvesters for Biomedical Applications // Nano Energy. 2019. 57. 879-902. DOI: 10.1016/j.nanoen.2019.01.012
9. Baule G. , McFee R. Detection of the magnetic field of the heart // American Heart Journal. 1963. 66(1). 95-96. DOI: 10.1016/0002-8703(63)90075-9
10. Newmarker C. The Secrets of Harnessing Electricity from a Beating Heart // MD+DI: website. 2014. Available at: https://www.mddionline.com/secrets-harnessingelectricity-beating-heart (Accessed: 16.10.2023).
Review
For citations:
Lobekin V.N., Ivasheva E.E., Kafarov R.G., Karachinov V.A., Kondrashov A.G., Bichurin M.I. Magnetoelectric harvester in the magnetocardiograph system. Title in english. 2023;(5(134)):780-787. (In Russ.) https://doi.org/10.34680/2076-8052.2023.5(134).780-787