Preview

Title in english

Advanced search

Simulation of an algorithm for increasing the resolution of a hyperspectral system

https://doi.org/10.34680/2076-8052.2023.5(134).671-679

Abstract

The article deals with the issues of computer simulation of algorithms for processing spectral images, namely: the procedure for increasing their clarity. For this purpose, a spectral image obtained from a hyperspectrometer is used, as well as additional information from a high-resolution color video camera. The hyperspectrometer and the color video camera form a hyperspectral system in which various processing procedures can be implemented. The article considers a relatively simple processing algorithm with use of E. Land's retinex theory. A block diagram of the image processing stages is presented, as well as the results of computer modeling using real spectral images. Comparative quantitative characteristics of reference and processed images are analyzed. It is shown by modeling that with insignificant spatial distortions, the number of singular points (gradients) of the image, and, consequently, the clarity of the original spectral image increase by several times.

About the Authors

V. M. Gareev
Yaroslav-the-Wise Novgorod State University
Russian Federation

 Veliky Novgorod 



M. V. Gareev
Yaroslav-the-Wise Novgorod State University
Russian Federation

 Veliky Novgorod 



N. P. Kornyshev
Yaroslav-the-Wise Novgorod State University
Russian Federation

 Veliky Novgorod 



D. A. Serebriakov
Yaroslav-the-Wise Novgorod State University
Russian Federation

 Veliky Novgorod 



N. E. Bystrov
Yaroslav-the-Wise Novgorod State University
Russian Federation

 Veliky Novgorod 



References

1. Akgun T., Altunbasak Y., Mersereau R. M. Super-resolution reconstruction of hyperspectral images // IEEE Transactions on Image Processing. 2005. 14(11). 1860-1875. DOI: 10.1109/tip.2005.854479

2. Tian C., Xu Y., Fei L., Yan K. Deep Learning for Image Denoising: A Survey // Genetic and Evolutionary Computing (ICGEC 2018): Advances in Intelligent Systems and Computing. 2019. 834. 563-572. DOI: 10.1007/978-981-13-5841-8_59

3. Zhong P., Gong Z., Li S., Schönlieb C-B. Learning to Diversify Deep Belief Networks for Hyperspectral Image Classification // IEEE Transactions on Geoscience and Remote Sensing. 2017. 55(6). 3516-3530. DOI: 10.1109/TGRS.2017.2675902

4. Shen L., Yeo C., Hua B. Intrinsic Image Decomposition Using a Sparse Representation of Reflectance // IEEE Transactions on Pattern Analysis and Machine Intelligencel. 2013. 35(12). 2904-2915. DOI: 10.1109/TPAMI.2013.136

5. Kang X., Li S., Fang L., Benediktsson J. A. Pansharpening Based on Intrinsic Image Decomposition // Sensing and Imaging. 2014. 15(1). 94. DOI: 10.1007/s11220-014-0094-8

6. Yue H., Yang J., Sun X., Wu F., Hou C. Contrast Enhancement Based on Intrinsic Image Decomposition // IEEE Transactions on Image Processing. 2017. 26(8). 3981-3994. DOI: 10.1109/TIP.2017.2703078

7. Kahu S. Y., Raut R. B., Bhurchandi K. M. Review and evaluation of color spaces for image/video compression // Color Research and Application. 2018. 44(1). 8-33. DOI: 10.1002/col.22291

8. Ghamisi P., Rasti B., Yokoya N., Wang Q., Hofle B., Bruzzone L., Bovolo F., Chi M., Anders K., Gloaguen R., Atkinson P., Benediktsson J. Multisource and Multitemporal Data Fusion in Remote Sensing: A Comprehensive Review of the State of the Art // IEEE Geoscience and Remote Sensing Magazine. 2019. 7(1). 6-39. DOI: 10.1109/MGRS.2018.2890023

9. Li W., Wu G., Zhang F., Du Q. Hyperspectral Image Classification Using Deep Pixel-Pair Features // IEEE Transactions on Geoscience and Remote Sensing. 2017. 55(2). 844-853. DOI: 10.1109/TGRS.2016.2616355

10. Bel'skii A. B. Primenenie giperspektrometrov dlia resheniia zadach po obnaruzheniiu, raspoznavaniiu ob"ektov v sostave vertoletov [Application of hyperspectrometers in detecting and recognising the objects as part of helicopters] // Aktual'nye voprosy issledovanii v avionike: teoriia, obsluzhivanie, razrabotki: sbornik dokladov VI Mezhdunarodnoi nauchno-prakticheskoi konferentsii «AVIATOR», Voronezh, 14–15 fevralia 2019 g. [Current issues of research in avionics: theory, maintenance, development. Collection of scientific articles based on the reports of the VI International Scientific and Practical Conference "AVIATOR" (February 14-15, 2019)]. Voronezh, VVS VVA, 2019. 91-97.

11. Lu G., Fei B. Medical hyperspectral imaging: a review // Journal of Biomedical Optics. 2014. 19(1). 010901. DOI: 10.1117/1.JBO.19.1.010901


Review

For citations:


Gareev V.M., Gareev M.V., Kornyshev N.P., Serebriakov D.A., Bystrov N.E. Simulation of an algorithm for increasing the resolution of a hyperspectral system. Title in english. 2023;(5(134)):671-679. (In Russ.) https://doi.org/10.34680/2076-8052.2023.5(134).671-679

Views: 26


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2076-8052 (Print)