Preview

Title in english

Advanced search

Features of the calculation of the cross-correlation function in determining the disparity in a stereo vision system

https://doi.org/10.34680/2076-8052.2023.5(134).647-657

Abstract

This article considers the methods of calculating the cross-correlation function in determining the disparity from the images of a stereo pair formed by a stereo vision system. When determining the disparity, it is necessary to find a point on the second image of the stereo pair at a given point of the first image, which can be done by finding the maximum of the cross-correlation function. The possibility of reducing the amount of calculations in the time domain when using a non-positional calculus system, also called a residue number system, is considered. As a result of modeling based on a system of positional calculus and a residue number system using similar-shaped functions shifted along the X axis relative to each other, as well as using real stereo images, the coincidence of the main maxima of the cross-correlation function is shown with a significant reduction in the amount of calculations. 

About the Authors

V. M. Gareev
Yaroslav-the-Wise Novgorod State University
Russian Federation

Veliky Novgorod 



M. V. Gareev
Yaroslav-the-Wise Novgorod State University
Russian Federation

Veliky Novgorod 



S. I. Kondrat'eva
Yaroslav-the-Wise Novgorod State University
Russian Federation

Veliky Novgorod 



N. P. Kornyshev
Yaroslav-the-Wise Novgorod State University
Russian Federation

Veliky Novgorod 



D. I. Rodionov
Yaroslav-the-Wise Novgorod State University
Russian Federation

Veliky Novgorod 



D. A. Serebriakov
Yaroslav-the-Wise Novgorod State University
Russian Federation

Veliky Novgorod 



V. A. Karachinov
Yaroslav-the-Wise Novgorod State University
Russian Federation

Veliky Novgorod 



References

1. Baltsavias E. P. A Comparison between Photogrammetry and Laser Scanning // ISPRS Journal of Photogrammetry Remote Sensing. 1999. 54(2/3). 83-94. DOI: 10.1016/s0924-2716(99)00014-3

2. Rzonca A. Review of Methods of Combined Orientation of Photogrammetric and Laser Scanning Data // Measurement Automation Monitoring. 2018. 64(3). 57-62.

3. Rönnholm P., Haggrén H. Registration of Laser Scanning Point Clouds and Aerial Images Using Either Artificial or Natural Tie Features // ISPRS Annais of the Photogrammetry Remote Sensing and Spatial Information Sciences. 2012. 1-3(3). 63-68. DOI: 10.5194/isprsannals-I-3-63-2012

4. Parmehr E. G., Fraser C. S., Zhang C., Leach J. Automatic Registration of Optical Imagery with 3d Lidar Data Using Local Combined Mutual Information // ISPRS Annais of the Photogrammetry Remote Sensing and Spatial Information Sciences. 2013. Vol. II-5-W2. P. 229-234. DOI: 10.5194/isprsannals-II-5-W2-229-2013

5. Mitishita E., Costa F., Centeno J. Lidar and Photogrammetric Datasets Integration Using Sub-Block of Images // ISPRS Annais of the Photogrammetry Remote Sensing and Spatial Information Sciences. 2020. 1. 101-107. DOI: 10.5194/isprs-annals-V-1-2020-101-2020

6. Habib A., Bang Ki-In, Kersting A. P. Impact of Lidar System Calibration on the Relative and Absolute Accuracy of Derived Point Cloud // The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences (ISPRS Archives). 2010. 38. 17532854. URL: https://www.asprs.org/wpcontent/uploads/2013/08/Kersting_1.pdf (Дата обращения: 05.10.2023).

7. Li J., Yang B., Chen C., Habib A. NRLI-UAV: Non-Rigid Registration of Sequential Raw Laser Scans and Images for Low-Cost UAV LiDAR Point Cloud Quality Improvement // ISPRS Journal of Photogrammetry Remote Sensing. 2019. 158. 123-145. DOI: 10.1016/j.isprsjprs.2019.10.009

8. Zhang J., Singh S. Low-Drift and Real-Time Lidar Odometry and Mapping // Autonomous Robots. 2017. 41(2). 401-416. DOI: 10.1007/s10514-016-9548-2

9. Valbuena R., Mauro F., Arjonilla F. J., Manzanera J. A. Comparing Airborne Laser Scanning-Imagery Fusion Methods Based on Geometric Accuracy in Forested Areas // Remote Sensing of Environment. 2011. 115. 1942-1954. DOI: 10.1016/j.rse.2011.03.017

10. Fragkos P., Ioannidis C. Assessment of Lidargrammetry for Spatial Data Extraction // Proceedings of the Fourth International Conference on Remote Sensing and Geoinformation of Environment, Paphos, Cyprus, 4–8 April 2016. Paphos, Cyprus, 2016. Vol. 9688. P. 96881L-1. DOI: 10.1117/12.2240653

11. Teo T.-A., Shih T.-Y., Lin Y.-T., Huang C.-M. The Generation of Inferred Stereo Images from Lidar Data // Proceedings of the 31st Asian Conference on Remote Sensing 2010 ACRS, Hanoi, Vietnam, 1–5 November 2010: in 2 vols. Hanoi, Vietnam, 2010. Vol. 1. P. 459-464.

12. Kozlov V. L., Kuz'michev I. R. Izmeritel' dal'nosti i razmernykh parametrov ob"ektov na osnove tsifrovoi fotokamery [Equipment for distance and size measurements of different objects based on analysis of the digital photographic images] // Vestnik Belorusskogo gosudarstvennogo universiteta. Seriia 1. Fizika. Matematika. Informatika, 2011. 1. 33-38.

13. Volkova M. A., Lutsiv V. R. Metody obrabotki i raspoznavaniia izobrazhenii [Methods for image processing and recognition]. Saint Petersburg, ITMO University Publ., 2016. 40 p. Available at: https://books.ifmo.ru/file/pdf/1979.pdf (Accessed: 05.10.2023).

14. Isupov K. S. Vysokoproizvoditel'nye vychisleniia s ispol'zovaniem sistemy ostatochnykh klassov [An overview of high-performance computing using the residue number system] // Program Systems: Theory and Applications. 2021. 12(2). 137-192. DOI: 10.25209/2079-3316-2021-12-2-137-192

15. Kukushkin S. S. Konechnye polia i informatika [Finite fields and information science]. In 2 vols. Vol. 1. Metody i algoritmy, klassicheskie i netraditsionnye, osnovannye na ispol'zovanii konstruktivnoi teoremy ob ostatkakh [Classic and nontraditional methods and techniques based on the remainder theorem]. Moscow, MO Rossii Publ., 2003. 281 p.

16. Gonzalez R., Woods R., Eddins S. Digital image processing using MATLAB. Pearson Prentice Hall, Upper Saddle River, 2004. 620 p. (Russ. ed.: Gonsales R., Vuds R., Eddins S. Tsifrovaia obrabotka izobrazhenii v srede MATLAB. Moscow, Tekhnosfera Publ., 2006. 615 p.)

17. Pratt W. K. Digital Image Processing. Wiley-Interscience, New York, 1978. 720 p. (Russ. ed.: Prett U. Tsifrovaia obrabotka izobrazhenii. V 2-kh kn. Kn. 2. Moscow, Mir Publ., 1982. 480 p.)


Review

For citations:


Gareev V.M., Gareev M.V., Kondrat'eva S.I., Kornyshev N.P., Rodionov D.I., Serebriakov D.A., Karachinov V.A. Features of the calculation of the cross-correlation function in determining the disparity in a stereo vision system. Title in english. 2023;(5(134)):647-657. (In Russ.) https://doi.org/10.34680/2076-8052.2023.5(134).647-657

Views: 34


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2076-8052 (Print)