Features of the calculation of the cross-correlation function in determining the disparity in a stereo vision system
https://doi.org/10.34680/2076-8052.2023.5(134).647-657
Abstract
This article considers the methods of calculating the cross-correlation function in determining the disparity from the images of a stereo pair formed by a stereo vision system. When determining the disparity, it is necessary to find a point on the second image of the stereo pair at a given point of the first image, which can be done by finding the maximum of the cross-correlation function. The possibility of reducing the amount of calculations in the time domain when using a non-positional calculus system, also called a residue number system, is considered. As a result of modeling based on a system of positional calculus and a residue number system using similar-shaped functions shifted along the X axis relative to each other, as well as using real stereo images, the coincidence of the main maxima of the cross-correlation function is shown with a significant reduction in the amount of calculations.
About the Authors
V. M. GareevRussian Federation
Veliky Novgorod
M. V. Gareev
Russian Federation
Veliky Novgorod
S. I. Kondrat'eva
Russian Federation
Veliky Novgorod
N. P. Kornyshev
Russian Federation
Veliky Novgorod
D. I. Rodionov
Russian Federation
Veliky Novgorod
D. A. Serebriakov
Russian Federation
Veliky Novgorod
V. A. Karachinov
Russian Federation
Veliky Novgorod
References
1. Baltsavias E. P. A Comparison between Photogrammetry and Laser Scanning // ISPRS Journal of Photogrammetry Remote Sensing. 1999. 54(2/3). 83-94. DOI: 10.1016/s0924-2716(99)00014-3
2. Rzonca A. Review of Methods of Combined Orientation of Photogrammetric and Laser Scanning Data // Measurement Automation Monitoring. 2018. 64(3). 57-62.
3. Rönnholm P., Haggrén H. Registration of Laser Scanning Point Clouds and Aerial Images Using Either Artificial or Natural Tie Features // ISPRS Annais of the Photogrammetry Remote Sensing and Spatial Information Sciences. 2012. 1-3(3). 63-68. DOI: 10.5194/isprsannals-I-3-63-2012
4. Parmehr E. G., Fraser C. S., Zhang C., Leach J. Automatic Registration of Optical Imagery with 3d Lidar Data Using Local Combined Mutual Information // ISPRS Annais of the Photogrammetry Remote Sensing and Spatial Information Sciences. 2013. Vol. II-5-W2. P. 229-234. DOI: 10.5194/isprsannals-II-5-W2-229-2013
5. Mitishita E., Costa F., Centeno J. Lidar and Photogrammetric Datasets Integration Using Sub-Block of Images // ISPRS Annais of the Photogrammetry Remote Sensing and Spatial Information Sciences. 2020. 1. 101-107. DOI: 10.5194/isprs-annals-V-1-2020-101-2020
6. Habib A., Bang Ki-In, Kersting A. P. Impact of Lidar System Calibration on the Relative and Absolute Accuracy of Derived Point Cloud // The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences (ISPRS Archives). 2010. 38. 17532854. URL: https://www.asprs.org/wpcontent/uploads/2013/08/Kersting_1.pdf (Дата обращения: 05.10.2023).
7. Li J., Yang B., Chen C., Habib A. NRLI-UAV: Non-Rigid Registration of Sequential Raw Laser Scans and Images for Low-Cost UAV LiDAR Point Cloud Quality Improvement // ISPRS Journal of Photogrammetry Remote Sensing. 2019. 158. 123-145. DOI: 10.1016/j.isprsjprs.2019.10.009
8. Zhang J., Singh S. Low-Drift and Real-Time Lidar Odometry and Mapping // Autonomous Robots. 2017. 41(2). 401-416. DOI: 10.1007/s10514-016-9548-2
9. Valbuena R., Mauro F., Arjonilla F. J., Manzanera J. A. Comparing Airborne Laser Scanning-Imagery Fusion Methods Based on Geometric Accuracy in Forested Areas // Remote Sensing of Environment. 2011. 115. 1942-1954. DOI: 10.1016/j.rse.2011.03.017
10. Fragkos P., Ioannidis C. Assessment of Lidargrammetry for Spatial Data Extraction // Proceedings of the Fourth International Conference on Remote Sensing and Geoinformation of Environment, Paphos, Cyprus, 4–8 April 2016. Paphos, Cyprus, 2016. Vol. 9688. P. 96881L-1. DOI: 10.1117/12.2240653
11. Teo T.-A., Shih T.-Y., Lin Y.-T., Huang C.-M. The Generation of Inferred Stereo Images from Lidar Data // Proceedings of the 31st Asian Conference on Remote Sensing 2010 ACRS, Hanoi, Vietnam, 1–5 November 2010: in 2 vols. Hanoi, Vietnam, 2010. Vol. 1. P. 459-464.
12. Kozlov V. L., Kuz'michev I. R. Izmeritel' dal'nosti i razmernykh parametrov ob"ektov na osnove tsifrovoi fotokamery [Equipment for distance and size measurements of different objects based on analysis of the digital photographic images] // Vestnik Belorusskogo gosudarstvennogo universiteta. Seriia 1. Fizika. Matematika. Informatika, 2011. 1. 33-38.
13. Volkova M. A., Lutsiv V. R. Metody obrabotki i raspoznavaniia izobrazhenii [Methods for image processing and recognition]. Saint Petersburg, ITMO University Publ., 2016. 40 p. Available at: https://books.ifmo.ru/file/pdf/1979.pdf (Accessed: 05.10.2023).
14. Isupov K. S. Vysokoproizvoditel'nye vychisleniia s ispol'zovaniem sistemy ostatochnykh klassov [An overview of high-performance computing using the residue number system] // Program Systems: Theory and Applications. 2021. 12(2). 137-192. DOI: 10.25209/2079-3316-2021-12-2-137-192
15. Kukushkin S. S. Konechnye polia i informatika [Finite fields and information science]. In 2 vols. Vol. 1. Metody i algoritmy, klassicheskie i netraditsionnye, osnovannye na ispol'zovanii konstruktivnoi teoremy ob ostatkakh [Classic and nontraditional methods and techniques based on the remainder theorem]. Moscow, MO Rossii Publ., 2003. 281 p.
16. Gonzalez R., Woods R., Eddins S. Digital image processing using MATLAB. Pearson Prentice Hall, Upper Saddle River, 2004. 620 p. (Russ. ed.: Gonsales R., Vuds R., Eddins S. Tsifrovaia obrabotka izobrazhenii v srede MATLAB. Moscow, Tekhnosfera Publ., 2006. 615 p.)
17. Pratt W. K. Digital Image Processing. Wiley-Interscience, New York, 1978. 720 p. (Russ. ed.: Prett U. Tsifrovaia obrabotka izobrazhenii. V 2-kh kn. Kn. 2. Moscow, Mir Publ., 1982. 480 p.)
Review
For citations:
Gareev V.M., Gareev M.V., Kondrat'eva S.I., Kornyshev N.P., Rodionov D.I., Serebriakov D.A., Karachinov V.A. Features of the calculation of the cross-correlation function in determining the disparity in a stereo vision system. Title in english. 2023;(5(134)):647-657. (In Russ.) https://doi.org/10.34680/2076-8052.2023.5(134).647-657