Interaction of graphite and its compounds with ferrocene under microwave synthesis
https://doi.org/10.34680/2076-8052.2021.4(125).24-28
Abstract
The paper deals with the synthesis of carbon nanostructures under microwave treatment of mixtures of ferrocene with solid carbon materials as microwave receptors that contribute to the maximum conversion of the energy of microwave electromagnetic radiation into the thermal factor of reaction process. Graphite, graphite oxide and thermally expanded graphite have been studied as effective microwave receptors. It is shown that microwave treatment of a mixture of graphite with ferrocene is accompanied by the formation of multi-walled carbon nanotubes of “match” morphology with a diameter of 60-70 nm in the form of intertwined ropes. When oxide graphite or thermally expanded graphite are used in the process, mainly three-dimensional nanostructures of grapheme / carbon nanotubes and the low-layer packets of micron-sized graphene planes are formed. In the case of thermally expanded graphite, nanostructures of toroidal morphology were also recorded among the synthesized products. The data of electron microscopy (TEM, SEM) of the obtained nanoobjects are presented.
About the Authors
A. N. ZaritovskyRussian Federation
E. N. Kotenko
Russian Federation
Ya. V. Demko
Russian Federation
T. A. Zaritovskaya
Russian Federation
References
1. Smith B.W., Monthioux M., Luzzi D.E. Encapsulated C60 in carbon nanotubes. Nature, 1998, vol. 396, pp. 323-324. doi: https://doi.org/10.1038/24521
2. Kim H., Wang M., Lee S.K., et al. Tensile properties of millimeter long multi-walled carbon nanotubes. Sci. Rep, 2017, vol. 7, art. 9512. doi: https://doi.org/10.1038/s41598-017-10279-0
3. Chen K., Gao W., Emaminejad S., et al. Printed carbon nanotube electronics and sensor systems. Adv. Mater, 2016, vol. 396, pp. 4397-4414. doi: https://doi.org/10.1002/adma.201504958
4. Crispin X. Thermoelectrics: carbon nanotubes get high. Nat. Energy, 2016, vol. 1, art. 16037. doi: https://doi.org/10.1038/nenergy.2016.37
5. Farrera C., Andon F.T., Feli N. Carbon nanotubes as optical sensors in biomedicine. ACS Nano, 2017, vol. 11, pp. 10637- 10643. doi: https://doi.org/10.1021/acsnano.7b06701
6. Dudley G., Richert R., Stiegman A. On the existence of and mechanism for microwave-specific reaction rate enhancement. Chem. Sci, 2015, vol. 6, pp. 2144-2152. doi: https://doi.org/10.1039/C4SC03372H
7. Kim T., Lee J., Lee K.-H. Microwave heating of carbonbased solid materials. Carbon Lett., 2014, vol. 15, no. 1, pp. 15-24. doi: https://doi.org/10.5714/CL.2014.15.1.015
8. Whittaker A.G., Mingos D.M.P. Synthetic reactions us-ing metal powders under microwave irradiation. J. Chem. Soc., Dalton Trans., 2000, vol. 21, pp. 1521. doi: https://doi.org/10.1039/B206557F
9. Andreev B.Ya., Diagileva L.M., Feklisov G.I. Termicheskaia stabilnost ferrotsena [Thermal stability of ferrocene]. Doklady Akademii nauk SSSR [Reports of the Academy of Sciences of the USSR], 1964, vol. 158, no. 6, pp. 1348-1354.
10. Bhattacharjee A., Rooj А., Roy D., Roy M. Thermal Deco Study of Ferrocene [(C5H5)2Fe]. J. of Exp. Phys., 2014, pp. 1-8. doi: https://doi.org/10.1155/2014/513268
11. Yaroshenko O.P., Savoskyn M.V., Sholohon V.I., Khripunov S.V. Sposib oderzhannya nitratumposition hrafitu, shcho termorozshyryuyetʹsya [The method of obtaining thermally expandable graphite nitrate]. Patent UA, no. 79387, 2007.
12. Voiry D., Yang J., Kupferberg J., et al. High-quality graphene via microwave reduction of solution-exfoliated graphene oxide. Science, 2016, vol. 53, no. 6306, pp. 1413- 1416. doi: https://doi.org/10.1126/science.aah3398
13. Dideikin A.T., Sokolov V.V., Sakseev D.A., Baidakova M.V., Vul A.Ya. Svobodnye grafenovye plenki iz termorasshirennogo grafita [Free graphene films from thermally expanded graphite] Zhurn. tekhn. fizсери., 2010, vol. 80, no. 9, pp. 146-149.
14. Sidorenko D.S., Vovk A.V., Kutylev S.A., Kuzmicheva G.M., Dubovskiy A.B. Polucheniye i izucheniye uglerodnykh nanotrubok [Production and study of carbon nanotubes]. Vestnik MITKHT, 2009, v. 4, no. 1, pp. 52-59.
15. Zaritovskiy A.N., Kotenko Ye.N., Glazunova V.A. Izucheniye vliyaniya moshchnosti mikrovolnovoy obrabotki na sintez i strukturu gibridnykh uglerodnykh nanomaterialov [Study of the effect of microwave processing power on the synthesis and structure of hybrid carbon nanomaterials]. Vestnik DonNU. A: Yestestvennyye nauki, 2021, no. 1, pp. 46-51.
16. Imholt T.J., Dyke C.A., Hasslacher B. et al. Nanotubes in micrwave fields: Light emission, intense heat, outgassing, and reconstruction. Chem. of Mater., 2003, vol. 15, no. 21, pp. 3969-3971. doi: https://doi.org/10.1021/cm034530g
17. Goriparti S., Miele E., Angelis F., et al. Review on recent progress of nanostructured anode materials for Li-ion batteries. J. of Power Sources, 2014, vol. 257, pp. 421-443. doi: https://doi.org/10.1016/j.jpowsour.2013.11.103
Review
For citations:
Zaritovsky A.N., Kotenko E.N., Demko Ya.V., Zaritovskaya T.A. Interaction of graphite and its compounds with ferrocene under microwave synthesis. Title in english. 2021;(4(125)):24-28. (In Russ.) https://doi.org/10.34680/2076-8052.2021.4(125).24-28