Preview

Title in english

Advanced search

Noise stability of the KAM-16 signal demodulator when transforming the boundaries of the signal constellation in a channel with multipath

https://doi.org/10.34680/2076-8052.2021.2(123).76-81

Abstract

The analysis of noise stability of a demodulator with quadrature amplitude modulation (KAM-16) in channels with multipath when changing the configuration of the boundaries of the signal constellation is carried out. The proposed method of analysis is based on the use of the vector algebra apparatus, which allows taking into account the fine structure of the multipath field, including the values of information symbols, delays of reflected signals, as well as their amplitudes and phases. The noise stability of reception was determined on the basis of integral distribution functions of signal distances to decision boundaries obtained by computer modeling. It is shown that the transformation of signal boundaries is effective only for small delays of reflected signals. Increasing the delay of reflected signals within the duration of sending significantly reduces noise stability. It is established that in a channel with multipath, the rotation of the decision boundaries can increase the noise immunity of the demodulator by 10 dB compared to the system without rotation.

About the Author

G. M. Sidelnikov
Сибирский государственный университет телекоммуникаций и информатики
Russian Federation


References

1. Zubarev Ju.B., Krivosheev M.I., Krasnosel'skij I.N. Cifrovoe televizionnoe veshhanie. Osnovy, metody, sistemy. [Digital television broadcasting. Fundamentals, methods, systems]. Moscow, Nauchno-issledovatel'skij institut radio, 2001, 568 p.

2. Martirosov V.E. Kogerentnye algoritmy posimvol'nogo priema signalov QAM [Coherent algorithms for character-bycharacter reception of QAM signals]. Elektrosvyaz, 2007, no. 1, pp. 47-51.

3. Martirosov V.E., Ramires H.A. Pomehoustojchivost' kogerentnogo priem signalov QAM [Noise Immunity of coherent QAM signal reception]. Elektrosvyaz, 2007, no. 5, pp 44-48.

4. Alehin V.A., Shebolkin V.V. Pomehoustojchivost' signalov s kvadraturnoj amplitudnoj moduljaciej [Noise Immunity of signals with quadrature amplitude modulation]. Izvestiya SFedU. Engineering Sciences, 2009, no. 1, vol.90, pp.7-14.

5. Janushkovskij A.Ju., Krivoshejkin A.V. Pomehoustojchivost' priema signalov fazoamplitudnoj moduljacii v uslovijah neideal'nosti kvadraturnyh kanalov [Noise-Immune Receiving of Phase-Amplitude Modulated Signals with Imperfect Quadrature Channels]. Journal of Instrument Engineering, 2011, vol. 54, no. 9, pp 58-63.

6. Janushkovskij A.Ju., Krivoshejkin A.V. Tochnost' opredelenija parametrov demoduljatora v sistemah s kvadraturnoj amplitudno-fazovoj moduljaciej. [Accuracy of determining demodulator parameters in systems with quadrature amplitude-phase modulation]. Journal of Instrument Engineering, 2010, vol. 53, no. 10, pp 55-60.

7. Jacenko S.Ju. Analiz iskazhenij i shumov na pomehoustojchivost' priema signalov kvadraturnoj amplitudnoj moduljacii [Analysis of distortion and noise on the noise immunity of receiving signals of quadrature amplitude modulation]. Radioelektronika, 2016, no. 5, p 3

8. Guzhva A.Ju. , Dvornikov S.V., Rusin, Pshenichnikov A.V. Metodika transformacii signal'nogo sozvezdija signala KAM-16 s izmeneniem ego formy [Method of transformation of the signal constellation of the QAM-16 signal with a change in its shape]. Elektrosvyaz, 2015, no. 2, pp. 28-31.

9. Framing structure, channel coding and modulation for second generation digital terrestrial broadcasting system (DVB-T2). DVB Document A122, Jun. 2008.

10. Dvornikov S.V., Pshenichnikov A.V., Burykin D.A. Strukturno-funkcional'naja model' signal'nogo sozvezdija s povyshennoj pomehoustojchivost'ju [Structural and functional model of a signal constellation with increased noise immunity]. Information and space, 2015, no. 2, pp. 4-7.

11. Dvornikov S.V., Pshenichnikov A.V., Jekonom V.P. Metod ocenki pomehoustojchivosti signal'nyh konstrukcij kvadraturnoj moduljacii s transformirovannymi konstelljacionnymi diagrammami [Method for evaluating the noise immunity of signal structures of quadrature modulation with transformed constellation diagrams]. Radio industry (Russia), 2017, no. 1, pp 51-56.

12. Chen Y,. Ueng Y. Noncorent Amplitude Phase Modulated Transmission for Releigh Block Fading Channels. IEE Transaction on communication, vol. 61, no.1, Jan. 2013, pp.217-227

13. Sidel'nikov G.M. Pomehoustojchivost' demoduljatorov signalov s fazovoj i otnositel'noj fazovoj moduljaciej v kanalah s mnogoluchevost'ju [Noise Immunity of signal demodulators with phase and relative phase modulation in channels with multipath]. Omskiy nauchnyy vestnik, no. 5, pp. 146-151

14. Sidel'nikov G.M. Sravnitel'nyj analiz jeffektivnosti raznesennogo priema signalov s kvadraturnoj amplitudnoj i s fazovoj moduljaciej v kanale s diskretnoj mnogoluchevost'ju [Comparative analysis of the efficiency of distributed signal reception with quadrature amplitude m with phase modulation in a channel with discrete multipath]. Vestnik of Volga State University of Technology. Series “Radio Engineering and Infocommunication Systems”. 2020, no. 2, pp. 18-30.

15. Tihonov V.I. Statisticheskaja radiotehnika [Statistical radio engineering]. Sovetskoye Radio Publishing house, 1970, p.600.


Review

For citations:


Sidelnikov G.M. Noise stability of the KAM-16 signal demodulator when transforming the boundaries of the signal constellation in a channel with multipath. Title in english. 2021;(2(123)):76-81. (In Russ.) https://doi.org/10.34680/2076-8052.2021.2(123).76-81

Views: 149


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2076-8052 (Print)