Reliability forecasting on the base of autoregression models for infocommunication systems
https://doi.org/10.34680/2076-8052.2021.2(123).82-86
Abstract
The solution to the problems of calculating the reliability indicators of infocommunication systems is based, as a rule, on statistical data. Their collection and processing are carried out by the monitoring system. To obtain the most accurate results of indicators calculation, it is necessary to conduct a large number of measurements. The article aims to make a forecast the parameters based on autoregressive models. The article considers methods of regression analysis and solves a problem indicators estimation based on experimental values for data trend forecasting. As a result, a solution to the problem of identifying the time series of variables by least squares method is proposed.
About the Author
A. A. SherstnevaRussian Federation
References
1. Dombrovskiy V.V., Ob"edko T.Yu. Optimal'nye strategii prognoziruyushchego upravleniya sistemami so sluchaynymi parametrami, opisyvaemymi mnogomernoy regressionnoy model'yu s markovskim pereklyucheniem rezhimov [Optimal Predictive Control Strategies for Systems with Random Parameters Described by a Multivariate Regression Model with Markov Mode Switching]. Tomsk State University Journal of Control and Computer Science, 2019, № 48, pp. 4-12.
2. Dombrovskiy V.V., Pashinskaya T.Yu. Prognoziruyushchee upravlenie sistemami s markovskimi skachkami i avtoregressionnym mul'tiplikativnym shumom s markovskim pereklyucheniem rezhimov [Predictive control of systems with Markov jumps and autoregressive multiplicative noise with Markov mode switching]. Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie vychislitelnaja tehnika i informatika [Tomsk State University Journal of Control and Computer Science], 2018, no. 44, pp. 4-9.
3. Sherstneva A.A. Otsenka parametrov odnomernogo i dvumernogo raspredeleniya sluchaynykh velichin [Parameters estimation of one-dimensional and twodimensional distribution of random variables]. Vestnik NovSU, 2020, no. 5 (121), pp. 63-67.
4. Sherstneva O.G., Sherstneva A.A. Analiz seti svyazi s uchetom pokazateley nadezhnosti [Analysis of the communication network with reliability indicators]. Vestnik Ryazanskogo gosudarstvennogo radiotekhnicheskogo universiteta, 2020, no. 73, pp. 52-58.
5. Bergmeir C., Hyndman R.J., Koo B. A note on the validity of cross-validation for evaluating autoregressive time series prediction. Computational Statistics and Data Analysis, 2018, no. 120, pp. 70–83.
6. Wickramasuriya S.L., Athanasopoulos G. Optimal forecast reconciliation for hierarchical and grouped time series through trace minimization. J American Statistical Association, 2019, no. 114(526). pp. 804–819.
7. Harrell F.E. Regression modeling strategies: With applications to linear models, logistic and ordinal regression, and survival analysis. 2nd ed. New York, USA, Springer, 2015. 568 p.
8. Paklin N.B., Oreshkov V.I. Biznes-analitika. Ot dannykh k znaniyam [Business analytics. From data to knowledge]. Uchebnoe posobie. Saint Petersburg, 2013. 704 p.
9. Vilkov A.P., Rodionova T.E. Ispol'zovanie sistem odnovremennykh uravneniy dlya polucheniya modeley opisaniya tekhnicheskikh ob"ektov [Using systems of simultaneous equations to obtain models for describing technical objects]. Sovremennye problemy proektirovaniya, proizvodstva i ekspluatatsii radiotekhnicheskikh sistem. UGTU, 2016, no. 10, pp. 175-177.
Review
For citations:
Sherstneva A.A. Reliability forecasting on the base of autoregression models for infocommunication systems. Title in english. 2021;(2(123)):82-86. (In Russ.) https://doi.org/10.34680/2076-8052.2021.2(123).82-86