Exploratory development of the longitudinal and thickness modes of the magnetoelectric effect in a magnetostrictive-piezoelectric two-layer structure Metglas/silicon carbide
https://doi.org/10.34680/2076-8052.2021.2(123).39-42
Abstract
This article presents the results of a study of the longitudinal and thickness modes in the field of electromechanical resonance in a magnetoelectric composite structure. Magnetoelectric structures of the composition Metglas/4H-SiC and Metglas/6H-SiC were theoretically explored. When obtaining theoretical results, the material parameters of the constituent phases of the composite structures were used. The calculated characteristics are compared for two different polytypes of silicon carbide 4H-SiC and 6H-SiC. It was found that the value of the resonance magnetoelectric coefficient in the Metglas/6H-SiC structure is higher than in the Metglas/4H-SiC structure for both the longitudinal and the thickness modes. The results obtained can be used in the future in the design of active semiconductor devices based on the ME effect.
About the Authors
O. V. SokolovRussian Federation
S. N. Ivanov
Russian Federation
D. A. Petrov
Russian Federation
M. I. Bichurin
Russian Federation
References
1. Bichurin M.I., Petrov V.M. Srinivasan G. Theory of magnetoelectric effects in ferromagnetic ferroelectric layer composites. J. Appl. Phys., 2002, vol.92, no.12, pp.7681-7683.
2. Bichurin M.I., Petrov V.M., and Srinivasan G. Theory of low-frequency magnetoelectric coupling in magnetostrictive-piezoelectric bilayers. Phys. Rev., 2003, B 68, pp.054402.
3. Bichurin M.I., Petrov V.M., Priya S. Magnetoelectric multiferroic composites. Ferroelectrics - Physical Effects / Ed. By M.Lallart. Rijeka: InTech, 2011, pp.277-302.
4. Magnetoelectricity in Composites / Eds. M.I.Bichurin and D. Viehland. Singapore, Pan Standford Publ., 2011, 286 p.
5. Bichurin M., Petrov V., Petrov R., Tatarenko A. Magnetoelectric Composites. Singapore: Pan Standford Publ., 2019. 280 p.
6. Mirgorodsky A.P., Smirnov M.B., Abdelmounîm E. et al. Molecular approach to the modeling of elasticity and piezoelectricity of SiC polytypes. Phys. Rev. B., 1995, v.52, no.6, p.3993. DOI: https://doi.org/10.1103/PhysRevB.52.3993
7. Cimalla V., Pezoldt J., Ambacher O. Group III nitride and SiC based MEMS and NEMS: materials properties, technology and applications. J. Phys. D: Appl. Phys., 2007, vol.40, no.20, p.6386. DOI: http://.doi.org/10.1088/0022-3727/40/20/S19
8. Sokolov O.V., Leont'ev V.S. Modelirovanie prodol'noy mody magnitoelektricheskogo effekta v sloistoy structure metglas/niobat litiya [Modeling of a longitudinal mode of magnetoelectric effect in a Metglass/Lithium niobate layered structure]. Vestnik NovSU, 2018, no.4 (110), pp.24-27.
Review
For citations:
Sokolov O.V., Ivanov S.N., Petrov D.A., Bichurin M.I. Exploratory development of the longitudinal and thickness modes of the magnetoelectric effect in a magnetostrictive-piezoelectric two-layer structure Metglas/silicon carbide. Title in english. 2021;(2(123)):39-42. https://doi.org/10.34680/2076-8052.2021.2(123).39-42