Specific features of solid solution hardening of metals and alloys under high-strain-rate deformation
https://doi.org/10.34680/2076-8052.2021.2(123).36-38
Abstract
The high strain rate deformation of metals and alloys, containing alloying elements is theoretically analyzed. An expression for the contribution of alloying elements to deforming stresses is obtained. Solid solution hardening of alloys increases linearly with increasing plastic deformation rate. The concentration dependence of the mechanical properties under high-strain-rate deformation differs essentially from the analogous dependence under quasi-static deformation. This difference is due to the action of collective dynamic effects. The concentration dependence of hardening under high-strain-rate deformation is determined by the competition between the interaction of the dislocation with alloying elements and dislocations of the ensemble. If interaction with alloying elements dominates, hardening increases in proportion to the square root of the concentration. If the collective interaction of dislocations predominates, the hardening increases linearly with increasing concentration.
About the Authors
V. V. MalashenkoRussian Federation
A. D. Gladkaya
Russian Federation
T. I. Malashenko
Russian Federation
References
1. Smith R.F., Eggert J.H., Rudd R.E. et al. High strain-rate plastic flow in Al and Fe. Journal of Applied Physics, 2011, vol.110, iss.12. Article number: 123515. DOI: https://doi.org/10.1063/1.3670001
2. Lee J., Veysset D., Singer J. et al. High strain rate deformation of layered nanocomposites. Nature Communications, 2012, no.3. Article number: 1164. DOI: https://doi.org/10.1038/ncomms2166
3. Batani D. Matter in extreme conditions produced by lasers. EPL, 2016, vol.114, no.6. Article number: 65001. DOI: https://doi.org/10.1209/0295-5075/114/65001
4. Tramontina D., Erhart P., Germann T. et al. Molecular dynamics simulations of shock-induced plasticity in tantalum // High Energy Density Physics, 2014, vol.10, no.1, pp.9-15. DOI: https://doi.org/10.1016/j.hedp.2013.10.007
5. Malashenko V.V. Zavisimost' dinamicheskogo predela tekuchesti binarnykh splavov ot plotnosti dislokatsiy pri vysokoenergeticheskikh vozdeystviyakh [Dependence of Dynamic Yield Stress of Binary Alloys on the Dislocation Density under High-Energy Impacts]. Fizika tverdogo tela, 2020, vol. 62, no.10, pp. 1683-1685.
6. Malashenko V.V. Vliyaniye kollektivnykh effektov na kontsentratsionnuyu zavisimost' predela tekuchesti splavov pri vysokoenergeticheskikh vozdeystviyakh [The Influence of Collective Effects on the Concentration Dependence of the Yield Stress of Alloys under High-Energy Impacts]. Pis'ma v ZHTF, 2020, vol 46, no.18, pp. 39-41.
7. Varyukhin V.N., Malashenko V.V. Dinamicheskiye effekty v defektnoy sisteme kristala [Dynamic Effects in a Defective System of Crystal] Izvestiya RAN. Seriya fizicheskaya, 2018, vol.82, no. 9, pp.37-42.
8. Malashenko V.V. Dynamic drag of edge dislocation by circular prismatic loops and point defects. Physica B: Phys. Cond. Mat., 2009, vol.404, no.21, pp.3890-3893. DOI: https://doi.org/10.1016/j.physb.2009.07.122
9. Asay J.R., Fowles G.R., Durall G.E. et al. Effect of point defect on elastic precursor decay in LiF. Journal of Appl. Phys., 1972, vol.43, no.5, pp.2132-2145. DOI: https://doi.org/10.1063/1.1661464
10. Charit I., Seok C.S., Murty K.L. Synergistic effects of interstitial impurities and radiation defects on mechanical characteristics of ferritic steels. Journal of Nuclear Materials, 2007, vol.361, no.2, pp.262-273. DOI: https://doi.org/10.1016/j.jnucmat.2006.12.003
Review
For citations:
Malashenko V.V., Gladkaya A.D., Malashenko T.I. Specific features of solid solution hardening of metals and alloys under high-strain-rate deformation. Title in english. 2021;(2(123)):36-38. (In Russ.) https://doi.org/10.34680/2076-8052.2021.2(123).36-38