Electric osmosis in heat pipes
https://doi.org/10.34680/2076-8052.2021.2(123).27-30
Abstract
In this article, we reviewed the studies of electric osmosis in porous and capillary structures. We have considered methods for modeling electroosmotic flow and the effect of porous structure parameters on it. We also analyzed the effect of a magnetic field and a combination of fields — magnetic and electric — on the electroosmotic flow. We considered an example of the implementation of an electroosmotic pump in a liquid cooling system, which indicates the prospects of its use in such systems, its reliability and manufacturability. However, there is currently no example of practical implementation of an electroosmotic pump in heat pipes. The lack of practical samples makes research in this direction urgent. Our work will allow us to create new types of heat pipes with the ability to operate them in any position in space.
About the Authors
Yu. V. KilibaRussian Federation
V. A. Kiselev
Russian Federation
R. V. Petrov
Russian Federation
A. S. Tatarenko
Russian Federation
References
1. Berrouche Y., Avenas Y., Schaeffer C., et al. Design of a porous electroosmotic pump used in power electronic cooling. IEEE Trans Ind Appl, 2009, vol.45(6), pp.2073–2079.
2. Arnold A.K. Numerical modelling of electroosmotic flow through micro-channels. Ph.D. Thesis, 2007, Swansea University.
3. Chai Z., Guo Z., Shi B. Study of electroosmotic flows in microchannels packed with variable porosity media via lattice Boltzmann method. J Appl Phys, 2009, vol.101(10), pp.104, 913.
4. Liapis A.I., Grimes B.A. Modeling the velocity field of the electroosmotic flow in charged capillaries and in capillary columns packed with charged particles: interstitial and intraparticle velocities in capillary electrochromatography systems. J Chromatogr A, 2000, vol.877(1), pp.181–215.
5. Chapman D.L. Li. A contribution to the theory of electrocapillarity. London Edinb Dublin Philos Mag J Sci, 1913, vol. 25(148), pp.475–481.
6. Chen S., He X., Bertola V., et al. Electro-osmosis of nonNewtonian fluids in porous media using lattice Poisson–Boltzmann method. J Colloid Interface Sci, 2014, vol.436, pp.186–193.
7. Li B., Zhou W., Yan Y., Han Z., Ren L. Numerical modelling of electroosmotic driven flow in nanoporous media by Lattice Boltzmann method. J Bionic Eng, 2013, vol.10(1), pp.90–99.
8. Wang M., Wang J., Chen S., et al. Electrokinetic pumping effects of charged porous media in microchannels using the Lattice Poisson–Boltzmann method. J Colloid Interface Sci, 2006, vol.304(1), pp.246–253.
9. Gouy M. Sur la constitution de la charge electrique a la surface d’un electrolyte. J Phys Theor Appl, 1910, vol. 9(1), pp.457–468.
10. Patankar N.A., Hu H.H. Numerical simulation of electroosmotic flow. Anal Chem, 1998, vol.70(9), pp.1870–1881
11. Scales N. Modelling electroosmotic and pressure-driven flow in porous media for microfluidic applications. Ph.D. Thesis, 2004, Ottawa, Carleton University.
12. Tang G., Ye P., Tao W. Pressure-driven and electroosmotic non-Newtonian flows through microporous media via Lattice Boltzmann method. J Non-Newton Fluid Mech, 2010, vol.165(21), pp.1536–1542.
13. Kang Y., Yang C., Huang X. Analysis of electroosmotic flow in a microchannel packed with microspheres. Microfluid and Nanofluidics, 2005, vol.1(2), pp.168–176.
14. Chen Y.F., Li M.C., Hu Y.H. et al. Low-voltage electroosmotic pumping using porous anodic alumina membranes. Microfluid and Nanofluidics, 2008, v.5(2), p.235-244.
15. Kang Y., Tan S.C., Yang C., et al. Electrokinetic pumping using packed microcapillary. Sens Actuators A Phys, 2007, vol.133(2), pp.375–382.
16. Yao S., Myers A.M., Posner J.D., et al. Electroosmotic pumps fabricated from porous silicon membranes. J Micro Electro Mech Syst, 2006, vol.15(3), pp.717–728.
17. Cheema T., Kim K., Kwak M., et al. Numerical investigation on electroosmotic flow in a porous channel. In: The 1st IEEE/IIAE international conference on intelligent systems and image processing, 2013, (ICISIP2013), pp.79-82.
18. Pascal J, Oyanader M, Arce P (2012) Effect of capillary geometry on predicting electroosmotic volumetric flowrates in porous or fibrous media. J Colloid Interface Sci, vol.378(1), pp.241–250.
19. Wang M. Structure effects on electro-osmosis in microporous media. J Heat Transf, 2012, vol.134(5), pp.051,020.
20. Di Fraia S., Massarotti N., Nithiarasu P. Modelling electroosmotic flow in porous media: a review. International Journal of Numerical Methods for Heat & Fluid Flow, vol.28, is. 2, pp.472 – 497.
21. Lemoff A.V., Lee A.P. An AC magnetohydrodynamic microfluidic switch for micro total analysis systems, Biomed. Microdevices. Biomedical Microdevices, 2003, v.5, p.55–60.
22. Jian Y.J., J. Su, Chang L., et al. Transient electroosmotic flow of general Maxwell fluids through a slit microchannel. Z. Angew. Math. Phys., 2014, vol.65, pp.435–447. DOI: 10.1007/s00033-013-0341-1
23. Chakraborty S. Analytical solutions of Nusselt number for thermally fully developed flow in microtubes under a combined action of electroosmotic forces and imposed pressure gradients. Int. J. Heat Mass Transf., 2006, vol.49, pp. 810–813.
24. Wang P.J., Chang C.Y., Chang M.L. Simulation of twodimensional fully developed laminar flow for a magnetohydrodynamic (MHD) pump. Biosens. Bioelectron., 2004, vol.20, pp.115–121.
25. Yao S., Huber D.D., Mikkelsen J., et al. “A Large Flowrate Electroosmotic Pump with Micron Pores”. The International Mechanical Engineering Congress and Exposition, Sixth Micro-Fluidic Symposium, IMECE2001/MEMS-23890, New York, New York, 2001.
26. Koo, J., Jiang, L., Bari, A., Zhang, L., Wang, E., Kenny, T.W., Santiago, J.G., Goodson, K.E., “Convective Boiling in Microchannel Heat Sinks with Spatially-Varying Heat Flux”, ITHERM 2002, San Diego, CA, USA, May, 2002, p.341-346.
Review
For citations:
Kiliba Yu.V., Kiselev V.A., Petrov R.V., Tatarenko A.S. Electric osmosis in heat pipes. Title in english. 2021;(2(123)):27-30. (In Russ.) https://doi.org/10.34680/2076-8052.2021.2(123).27-30