Research of the thermostabilization of the laser pump system
https://doi.org/10.34680/2076-8052.2022.3(128).26-31
Abstract
A theoretical substantiation of the need for thermal stabilization of laser diodes, which are the pumping system of a solid-state laser, is presented. The article demonstrates a thermal model of the thermal stabilization system of the laser pumping system. Thermal stabilization of the laser pumping system has been investigated with the ambient temperature range from 218.2 to 333.2 K and the dependence of the temperature of the pump diode lines on the ambient temperature has been obtained. Limiting characteristics of the thermal stabilization system has been investigated with the ambient temperature range from 218.2 to 333.2 K and the dependence of the maximum allowable heat release power in the pumping system on the ambient temperature was obtained. The proposed and researched possible options for improving the characteristics of the thermal stabilization system, namely, increasing pump volume flow, changing the area of the internal surface of the heat exchanger, installation of thermoelectric elements with higher cooling capacity.
About the Authors
O. V. LysenkoRussian Federation
M. I. Bichurin
Russian Federation
References
1. Volkov V.G. Tverdotel'nye lazery s nakachkoj moshchnymi lazernymi diodami, ispol'zuemye v sistemah obespecheniya bezopasnosti [Solid-state lasers pumped by high-power laser diodes used in security systems]. Sistemy upravleniya, svyazi i bezopasnosti — Systems of Control, Communication and Security, 2016, no. 2, pp. 142–181.
2. Grishanov V.N. Sistemy ohlazhdeniya lazerov: ucheb. posobie [Cooling systems for lasers: textbook]. Samara, Samara State Aerospace University Publ., 2006. 103 p.
3. Vlasova S.V., Vlasov A.B., Shapochkin P.Yu. Osobennosti izlucheniya lazernyh diodov v razlichnyh intervalah temperatur [Peculiarities of radiation of laser diodes in different temperature ranges]. Vestnik MSTU, 2017, vol. 20, no. 4. pp. 697–704. doi: https://doi.org/10.21443/1560-92782017-20-4-697-704
4. Klimkov Yu.M. Lazernaya tekhnika [Laser technology]. Moscow, MIIGAiK Publ., 2014. 143 p.
5. Baryshnikov V.I., Shtuber A.A. Perestraivaemyj poluprovodnikovyj lazer vizualizirovannoj sistemy infrakrasnogo kontrolya [Tunable semiconductor laser of the visualized infrared control system]. Molodaya nauka Sibiri: elektron. nauch. zhurn. — Young science of Siberia: an electronic academic journal, 2020, no. 2(8). Available at: http://mnv.irgups.ru/perestraivaemyypoluprovodnikovyy-lazer-vizualizirovannoy-sistemy-infrakrasnogo-kontrolya. (accessed 05.07.2022).
6. Voytsekhovskaya O.K. Lazery i spektroskopiya: uchebnoe posobie [Lasers and spectroscopy: textbook]. Tomsk, TML-Press Publ., 2010. 288 p.
7. GOST 28084–89. Liquids cooling low-freezing. General specifications. Moscow, Standartinform Publ., 2007. 16 p.
Review
For citations:
Lysenko O.V., Bichurin M.I. Research of the thermostabilization of the laser pump system. Title in english. 2022;(3(128)):26-31. (In Russ.) https://doi.org/10.34680/2076-8052.2022.3(128).26-31