Magnetoelectric effect in Metglas/PZT/Metglas toroidal structures
https://doi.org/10.34680/2076-8052.2023.1(130).186-191
Abstract
The article presents an experimental study of the magnetoelectric (ME) effect in composite structures with closed geometry in the form of a toroid. The experimental study was carried out on the basis of magnetostrictive-piezoelectric Metglas (AMAG-225) and PZT-19 materials. It has been found that the value of the output voltage increases due to an increase in the volume fraction of the magnetostrictive phase to a certain number of layers. The experimentally obtained dependences of the output voltage on the frequency of the supplied signal at constant current values are presented. It is also shown that with an increase in the number of Metglas layers in the structure, a shift in the resonant frequency is observed. The main advantage of this structure is the uniform distribution of the magnetic flux and the independence of this distribution from the position of the direct current wire within the hole. The magnetostrictive-piezoelectric structure investigated in the article provides ample opportunities for designing various magnetoelectronic systems, for example, contactless high current sensors with wireless data transmission.
About the Authors
I. Yu. MarkovRussian Federation
Markov I. Yu.,
Veliky Novgorod.
E. E. Ivasheva
Russian Federation
Ivasheva E. E.,
Veliky Novgorod.
O. V. Sokolov
Russian Federation
Sokolov O.V.,
Veliky Novgorod.
V. S. Leontiev
Russian Federation
Leontiev V.S.,
Veliky Novgorod.
M. I. Bichurin
Russian Federation
Bichurin M.I.,
Veliky Novgorod.
References
1. Bichurin M. I., Viehland D. Magnetoelectricity in Composites. New York, CRC Press: Boca Raton, 2011. 270 p.
2. Kambale R. C., Jeong D.-Y., Ryu J. Current Status of Magnetoelectric Composite Thin/Thick Films // Advances in Condensed Matter Physics. 2012. 1687-1693. DOI: 10.1155/2012/824643
3. Fuentes-Cobas L. E., Matutes-Aquino J. A., Fuentes-Montero M. E. Handbook of Magnetic Materials. Vol. 19. Ed. H. J. K. Buschow., Amsterdam, Elsevier, 2011. 129 p.
4. Duc N. H., Huong Giang D. T. Multiferroic magneto-electrostrictive composites and applications // Advanced Magnetism and Magnetic Materials. Vol. 2: Aspects of magneto-electrostrictive materials and applications. 2015. P. 141-271.
5. Dong S. X., Li J. F., Viehland D. Voltage gain effect in a ring-type magnetoelectric laminate // Applied Physics Letterst. 2004. 84. 4188-4190. DOI: 10.1063/1.1756676
6. Dong S., Li J. F., Viehland D. A strong magnetoelectric voltage gain effect in magnetostrictive-piezoelectric composite // Applied Physics Letterst. 2004. 85. 3534-3536. DOI: 10.1063/1.1786631
7. Dong S. X., Bai J. G., Zhai G. Y., Li J. F., Lu G. Q., Viehland D., Zhang S. J., Shrou T. R. Circumferential-mode, quasi-ring-type, magnetoelectric laminate composite-a highly sensitive electric current and/or vortex magnetic field sensor // Applied Physics Letterst. 2005. 86. 182506. DOI: 10.1063/1.1923184
8. Huong Giang, D. T., Tam, H. A., Ngoc Khanh, V. T., Vinh N.T., Anh Tuan P., Van Tuan N., Thi Ngoc N., Duc N. H. Magnetoelectric Vortex Magnetic Field Sensors Based on the Metglas/PZT Laminates // Sensors. 2020. 20(10). 2810. DOI: 10.3390/s20102810
9. Evan M., John K., George N., Stephen V., James K. Determination of resonant frequency of a piezoelectric ring for generation of ultrasonic waves // Innovative Systems Design and Engineering. 2011. 2(4). 103-110.
Review
For citations:
Markov I.Yu., Ivasheva E.E., Sokolov O.V., Leontiev V.S., Bichurin M.I. Magnetoelectric effect in Metglas/PZT/Metglas toroidal structures. Title in english. 2023;(1(130)):186-191. (In Russ.) https://doi.org/10.34680/2076-8052.2023.1(130).186-191