Preview

Title in english

Advanced search

Features of the formation of pseudo-hyperspectral images from RGB components

https://doi.org/10.34680/2076-8052.2023.1(130).169-177

Abstract

The article discusses the formation of spectral images in television multispectral and hyperspectral systems. A hyperspectral data cube contains more information than a multispectral system cube, however, hyperspectral systems have limitations in the spatial and temporal domain. The existing correlation between hyperspectral and multispectral information and the availability of data on the reflectivity of the studied scene make it possible to build a pseudo-hyperspectral system based on a multispectral one with a limited number of visualized spectral channels. At the same time, as a result of post-session processing, a limited number of multispectral images are converted into pseudo-hyperspectral images corresponding to several hundred spectral channels. The minimum multispectral system can be considered a television system consisting of three channels R, G and B. To implement the procedure for obtaining pseudo-hyperspectral images at the first stage of processing R, G, B components, it is necessary to implement methods to improve their color resolution and ensure white balance. The article considers the possibility of using the video information processing method based on the theory of nonlinear two-component vision of the Soviet engineer S. D.Remenko for the above problem.

About the Authors

N. P. Kornyshev
Yaroslav-the-Wise Novgorod State University
Russian Federation

Kornyshev N. P.,

Veliky Novgorod.



V. M. Gareev
Yaroslav-the-Wise Novgorod State University
Russian Federation

Gareev V. M.,

Veliky Novgorod.



M. V. Gareev
Yaroslav-the-Wise Novgorod State University
Russian Federation

Gareev M. V.,

Veliky Novgorod.



D. A. Serebryakov
Yaroslav-the-Wise Novgorod State University
Russian Federation

Serebryakov D. A.,

Veliky Novgorod.



References

1. Sun X., Zhang L., Yang H., Wu T., Cen Y., Guo Y. Enhancement of Spectral Resolution for Remotely Sensed Multispectral Image // IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 2015. 8. 2198-2211.

2. Huo H., Guo J., Li Z. Hyperspectral Image Classification for Land Cover Based on an Improved Interval Type-II Fuzzy C-Means Approach // Sensors (Basel). 2018. 18. 363. DOI: 10.3390/s18020363

3. Song Y.-Q., Zhao X., Su H.-Y., Li B., Hu Y.-M., Cu. X.-S. Predicting Spatial Variations in Soil Nutrients with Hyperspectral Remote Sensing at Regional Scale // Sensors. 2018. 18(9). 3086. DOI: 10.3390/s18093086

4. Fan L., Zhao J., Xu X., Liang D., Yang G., Feng H., Yang H., Wang Y., Chen G., Wei P. Hyperspectral-based Estimation of Leaf Nitrogen Content in Corn Using Optimal Selection of Multiple Spectral Variables // Sensors. 2019. 19(3). 2898. DOI: 10.3390/s19132898

5. Jarek P., Barry P., Perlman J., Markham B. Aggregation of hyperspectral Hyperion spectral bands into Landsat-7 ETM+ spectral bands // GARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote ensing Symposium. 2001 IEEE International Symposium on Geosciences and Remote Sensing, Institute of Electrical and Electronics Engineers. 2001. P. 2822-2824.

6. Remenko S. D. Opredeleniye osnovnykh ponyatiy v oblasti kolorimetrii i izmereniya tsvetovykh parametrov izlucheniya [Definition of basic concepts in the field of colorimetry and measurement of color parameters of radiation] // V All-Academic Seminar n Problems of Standardization and Metrology, Yerevan, November 16-20, 1987. Yerevan. 1987. P. 58–59.

7. Chuprov A. D., Sinkova V. I., Kuznetsov I. V. Teorii tsvetovospriyatiya. Fotoretseptornyy apparat setchatki glaza [Theories of color perception. Photoreceptor apparatus of the retina] // Modern problems of science and education. 2021. 6. Available at: https://science-education.ru/article/view?id=31287 (Accessed: 16.01.2023).

8. Land E., McCann J. Lightness and retinex theory // Journal of the Optical Society of America. 1971. 61(1). 1-11. DOI: 10.1364/JOSA.61.000001

9. Bertalmío M., Provenzi E. Issues about Retinex theory and contrast enhancement // International Journal of Computer Vision. 2009. 83(1). 101–119. DOI: 10.1007/s11263-009-0221-5

10. Roszczyk R., Krupa A., Antoniuk I. Normal Patch Retinex Robust Alghoritm for White Balancing in Digital Microscopy, In the case of microscopic medical images // Machine GRAPHICS & VISION. 2020. 29(1/4). 79-95. DOI: 10.22630/MGV.2020.29.1.5


Review

For citations:


Kornyshev N.P., Gareev V.M., Gareev M.V., Serebryakov D.A. Features of the formation of pseudo-hyperspectral images from RGB components. Title in english. 2023;(1(130)):169-177. (In Russ.) https://doi.org/10.34680/2076-8052.2023.1(130).169-177

Views: 59


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2076-8052 (Print)