Preview

Title in english

Advanced search

Сomputer simulation of procedures for merging hyperspectral and panchromatic images using wavelet transform

https://doi.org/10.34680/2076-8052.2023.1(130).158-168

Abstract

The article discusses procedures for increasing the spatial resolution of spectrograms by merging a panchromatic image and a hyperspectral one. High spatial resolution is necessary for various applications, for example, monitoring of air pollution, monitoring of heavy metals in soil and vegetation, crop conditions. An important condition for this type of image processing is the preservation of the constancy of the spatial structure of the spectral image with an increase in its spatial resolution. The need for such processing methods is caused by the need to improve the accuracy of remote sensing. The paper focuses on the procedures for merging images using wavelet transform. The experimental technique and methods for quantifying the quality of the resulting image are considered, and the results obtained are discussed from the point of view of the effectiveness of using standard methods for calculating wavelet transform coefficients.

About the Authors

V. M. Gareev
Yaroslav-the-Wise Novgorod State University
Russian Federation

Gareev V. M.,

Veliky Novgorod.



M. V. Gareev
Yaroslav-the-Wise Novgorod State University
Russian Federation

Gareev M. V.,

Veliky Novgorod.



N. P. Kornyshev
Yaroslav-the-Wise Novgorod State University
Russian Federation

Kornyshev N. P.,

Veliky Novgorod.



D. A. Serebryakov
Yaroslav-the-Wise Novgorod State University
Russian Federation

Serebryakov D. A.,

Veliky Novgorod.



References

1. Pansharpening v QGIS s ispol'zovaniyem Orfeo ToolBox [Pansharpening in QGIS using Orfeo ToolBox]. GIS-Lab. Available at: https://gis-lab.info/qa/qgis-pansharp-otb.html (Accessed: 10.12.2022).

2. Yang D., Luo Y., Zeng Y., Si F., Xi L., Zhou H., Liu W. Tropospheric NO2 Pollution Monitoring with the GF-5 Satellite Environmental Trace Gases Monitoring Instrument over the North China Plain during Winter 2018-2019 // Atmosphere. 2021. 12. 398. DOI: 10.3390/atmos12030398

3. Tang B.-H. Nonlinear Split-Window Algorithms for Estimating Land and Sea Surface Temperatures From Simulated Chinese Gaofen-5 Satellite Data // IEEE Transactions on Geoscience and Remote Sensing. 2018. 56(11). 6280-6289. DOI: 10.1109/TGRS.2018.2833859

4. Ye X., Ren H., Liu R., Qin Q., Liu Y., Dong J. Land Surface Temperature Estimate From Chinese Gaofen-5 Satellite Data Using Split-Window Algorithm // IEEE Transactions on Geoscience and Remote Sensing. 2017. 55(10). 5877-5888. DOI: 10.1109/TGRS.2017.2716401

5. Wang F., Gao J., Zha Y. Hyperspectral sensing of heavy metals in soil and vegetation: Feasibility and challenges // SPRS Journal of Photogrammetry and Remote Sensing. 2018. 136. 73-84. DOI: 10.1016/j.isprsjprs.2017.12.003

6. Giardino C., Brando V. E., Dekker A. G., Strombeck N., Candiani G. Assessment of water quality in Lake Garda (Italy) using Hyperion // Remote Sensing of Environment. 2007. 109(2). 183-195. DOI: 10.1016/j.rse.2006.12.017

7. Xia J. S., Du P. J., He X. Y., Chanussot J. Hyperspectral Remote Sensing Image Classification Based on Rotation Forest // IEEE Geoscience and Remote Sensing Letterst. 2014. 11(1). 239-243. DOI: 10.1109/LGRS.2013.2254108

8. Demir B., Erturk S. Hyperspectral image classification using relevance vector machines // IEEE Geoscience and Remote Sensing Letterst. 2007. 4(4). 586-590. DOI: 10.1109/LGRS.2007.903069

9. Lehigh University: official website. Available at: http://www.eecs.lehigh.edu/SPCRL/IF/image_fusion.htm (Accessed: 12.01.2023).

10. Aiazzi B., Baronti S., Selva N. Improving Component Substitution Pansharpening Through Multivariate Regression of MS +Pan Data // IEEE Transactions on Geoscience and Remote Sensing. 2007. 45(10). 3230-3239. DOI: 10.1109/TGRS.2007.901007

11. Sun W., Sun W., Chen B., Messinger D. W. Nearest-neighbor diffusion-based pan-sharpening algorithm for spectral images // Optical Engineering. 2013. 53. 3107. DOI: 10.1117/1.OE.53.1.013107

12. Metwalli M. R., Nasr A. H., Allah O. S. F., El-Rabaie S. Image fusion based on principal component analysis and high-pass filter // Proceedings of the 2009 International Conference on Computer Engineering & Systems, Cairo, Egypt, 14-16 December 2009. P. 63-70.

13. Zhou J., Civco D. L., Silander J. A. A wavelet transform method to merge Landsat TM and SPOT panchromatic data // Int. J. Remote Sens. 1998. 19. 743-757. DOI: 10.1080/014311698215973

14. Shah V. P., Younan N. H., King R. L. An Efficient Pan-Sharpening Method via aCombined Adaptive PCA Approach and Contourlets // IEEE Trans. Geosci. Remote. 2008. 46. 1323-1335. DOI: 10.1109/TGRS.2008.916211

15. Klonus S., Ehlers M. Image Fusion Using the Ehlers Spectral Characteristics Preserving Algorithm // GISci. Remote Sens. 2007. 44. 93-116. DOI: 10.2747/1548-1603.44.2.93

16. Klonus S., Ehlers M. Image Fusion Using the Ehlers Spectral Characteristics Preserving Algorithm // GISci. Remote Sens. 2007. 44. 93-116. DOI: 10.2747/1548-1603.44.2.93

17. Strang G., Nguyen T. Wavelets and Filter Banks. Wellesley, MA: Wellesley-Cambdrige Press. 1996. 500 p.


Review

For citations:


Gareev V.M., Gareev M.V., Kornyshev N.P., Serebryakov D.A. Сomputer simulation of procedures for merging hyperspectral and panchromatic images using wavelet transform. Title in english. 2023;(1(130)):158-168. (In Russ.) https://doi.org/10.34680/2076-8052.2023.1(130).158-168

Views: 45


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2076-8052 (Print)