Preview

Title in english

Advanced search

Tensor field method in the linear response theory

https://doi.org/10.34680/2076-8052.2022.3(128).21-25

Abstract

A new method for calculating distribution functions characterizing the degree of heterogeneity of macroscopic media is proposed. The introduced distribution functions are based on the smoothing procedure for a certain volume. The volume value is selected depending on the task of the study. It is shown that the distribution functions can be expressed in terms of local tensor fields, the use of which simplifies the procedure for closing the hierarchy of kinetic equations due to the transparent physical meaning of tensor fields. Based on the proposed method, the linear response problem is considered and an analytical expression for the reaction of the local density of the medium to a small external mechanical disturbance has been obtained. It is shown that the derived expression for the density distribution coincides with the result of the calculations carried out on the basis of the generating functional in the ergodic Weyl approximation.

About the Authors

V. V. Zubkov
Тверской государственный университет
Russian Federation


D. A. Mayfat
Тверской государственный университет
Russian Federation


K. Yu. Yashkin
Тверской государственный университет
Russian Federation


References

1. Bogolyubov N.N. Sobraniye nauchnykh trudov: v 12 t. T. 5: Statisticheskaya mekhanika. Neravnovesnaya statisticheskaya mekhanika [Collection of scientific works in twelve volumes. Vol. 5: Nonequilibrium Statistical Mechanics]. Moscow, Nauka Publ., 2006. 804 p.

2. Zubarev D.N. Neravnovesnaia statisticheskaia termodinamika [Nonequilibrium statistical thermodynamics]. Moscow, Nauka Publ., 1971. 416 p.

3. Zakharov A.Yu., Zubkov V.V., Folomeeva A.S. Generating functional of one-component classical systems in the ergodic approximation. Journal of Physics: Conference Series, 2020, vol. 1658, art. no. 012074. doi: http://doi.org/10.1088/17426596/1658/1/012074

4. Lutsko J.F. Recent developments in classical density functional theory. Advances in Chemical Physics, 2010, vol. 144, pp. 1–92. doi: https://doi.org/10.1002/9780470564318.ch1

5. Vrugt M., Löwen H., Wittkowski R. Classical dynamical density functional theory: from fundamentals to applications. Advances in Physics, 2020, vol. 69, no. 2, pp. 121–247. doi: https://doi.org/10.1080/00018732.2020.1854965

6. Kvasnikov I.A. Termodinamika i statisticheskaya fizika: v 3-kh t. T. 2. Teoriya ravnovesnykh sistem: Statisticheskaya fizika [Thermodynamics and statistical physics: in 3 volumes. Vol. 2. Theory of equilibrium systems: Statistical physics]. Moscow, Editorial URSS Publ., 2002. 432 p.

7. Klimontovich Yu.L. On the method of “second quantization” in phase space. JETP, 1958, vol. 6(33), no. 4, pp. 753–760.

8. Kuz’menkov L.S. Field form of dynamics and statistics of systems of particles with electromagnetic interaction. Theoretical and Mathematical Physics, 1991, vol. 86, pp. 159–168. doi: https://doi.org/10.1007/BF01016167

9. Drofa M.A., Kuz'menkov L.S. Continual approach to multiparticle systems with long-range interaction. Hierarchy of macroscopic fields and physical consequences. Theoretical and Mathematical Physics, 1996, vol. 108, pp. 848–859. doi: https://doi.org/10.1007/BF02070512

10. Klimontovich Yu.L. Statistical theory of open systems. Vol. 1: A unified approach to kinetic description of processes in active systems. Dordrecht, Springer Publ., 1995. 569 p.

11. Zakharov A.Yu. Teoreticheskiye osnovy fizicheskogo materialovedeniya. Statisticheskaya termodinamika model'nykh sistem. Statistical thermodynamics of model systems [Theoretical foundations of physical materials science. Statistical thermodynamics of model systems]. 2nd ed., rev. and add. St. Petersburg, Lan' Publ., 2016. 256 p.


Review

For citations:


Zubkov V.V., Mayfat D.A., Yashkin K.Yu. Tensor field method in the linear response theory. Title in english. 2022;(3(128)):21-25. (In Russ.) https://doi.org/10.34680/2076-8052.2022.3(128).21-25

Views: 38


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2076-8052 (Print)