Preview

Title in english

Advanced search

Field mechanics as the basis of the classical relativistic kinetic theory

https://doi.org/10.34680/2076-8052.2022.3(128).15-20

Abstract

It is shown that taking into account the field, through which the interaction between particles occurs, and the causality principle allows us to derive a kinetic equation for a microscopic distribution function, which enables us to describe the irreversible evolution of a particle system without involving any probabilistic hypotheses. An auxiliary scalar field is introduced to explain the dynamics of a system of neutral particles (atoms) in the framework of the classical field theory. It has been proved that the class of stable interatomic potentials can be represented as a superposition of Yukawa potentials. A complete system of equations for the relativistic dynamics of a system consisting of atoms and an auxiliary field has been obtained. The proposed relativistic-field approach to describing the dynamics of systems can be used as a probability-free method for constructing microscopic thermodynamics and kinetics of both macroscopic and "small" systems, including nanosystems.

About the Authors

A. Yu. Zakharov
Новгородский государственный университет имени Ярослава Мудрого
Russian Federation


V. V. Zybkov
Тверской государственный университет
Russian Federation


References

1. Ritz W., Einstein A. Zum gegenwärtigen Stand des Strahlungsproblems. Physikalische Zeitschrift, 1909, vol. 10, no. 9, pp. 323–324.

2. de Groot S.R., van Leeuwen W.A., van Weert Ch.G. Relativistic kinetic theory: principles and applications. Amsterdam, North-Holland Pub., 1980. 417 p.

3. Trump M.A., Schieve W.C. Classical relativistic many-body dynamics. Dordrecht: Springer, 1999. 365 p.

4. Liboff R. Kinetic theory: classical quantum and relativistic descriptions. N.Y., Springer Publ., 2003. 571 p.

5. Hakim R. Introduction to relativistic statistical mechanics: classical and quantum. New Jersey, World Scientific Publ., 2011. 538 p.

6. Eu B.C. Kinetic theory of nonequilibrium ensembles, irreversible thermodynamics, and generalized hydrodynamics: Vol. 2. Relativistic theories. N.Y., Springer Publ., 2016. 201 p.

7. Vereshchagin G.V., Aksenov A.G. Relativistic kinetic theory with applications in astrophysics and cosmology. Cambridge, Cambridge University Press Publ., 2017. 330 p.

8. Synge J.L. The electromagnetic two-body problem. Proc. Roy. Soc. A., 1940, vol. 177, no. 968, pp. 118–139. doi: https://doi.org/10.1098/rspa.1940.0114

9. Driver R.D. A two-body problem of classical electrodynamics: the one-dimensional case. Ann. Physics., 1963, vol. 21, no. 1, pp. 122–142. doi: http://doi.org/10.1016/0003-4916(63)90227-6

10. Hsing D.K. Existence and uniqueness theorem for the one-dimensional backwards two-body problem of electrodynamics. Phys. Rev. D., 1977, vol. 16, no. 4, pp. 974–982. doi: http://doi.org/10.1103/PhysRevD.16.974

11. Hoag J.T., Driver R.D. A delayed-advanced model for the electrodynamics two-body problem. Nonlinear analysis: theory, methods & applications, 1990, vol. 15, no. 2, pp. 165–184. doi: http://doi.org/10.1016/0362-546X(90)90120-6

12. Zakharov A.Yu. On physical principles and mathematical mechanisms of the phenomenon of irreversibility. Physica A: Statistical mechanics and its applications, 2019, vol. 525, pp. 1289–1295. doi: http://doi.org/10.1016/j.physa.2019.04.047

13. Baus M., Tejero C.F. Equilibrium statistical physics. Phases, phase transitions, and topological phases. N.Y., Springer Publ., 2021. 437 p.

14. Lorenz L. On the identity of the vibrations of light with electrical currents. Philosophical Magazine. Series 4, 1867, vol. 34, no. 230, pp. 287–301. doi: https://doi.org/10.1080/14786446708639882

15. Riemann B. A contribution to electrodynamics. Philosophical Magazine. Series 4, 1867, vol. 34, no. 231, pp. 368–372. doi: https://doi.org/10.1080/14786446708639897

16. Klein O. Quantentheorie und fünfdimensionale Relativitätstheorie. Zeitschrift für Physik, 1926, vol. 37, no. 12, pp. 895–906. doi: https://doi.org/10.1007/BF01397481

17. Fock V. Zur Schrödingerschen Wellenmechanik. Zeitschrift für Physik, 1926, vol. 38, no. 3, pp. 242–250. doi: https://doi.org/10.1007/BF01399113

18. Gordon W. Der Comptoneffekt nach der Schrödingerschen Theorie. Zeitschrift für Physik, 1926, vol. 40, no. 1–2, pp. 117–133. doi: https://doi.org/10.1007/BF01390840

19. Ivanenko D.D., Sokolov A.A. (1949). Klassicheskaya teoriyapolya (Novye problemy) [Classical field theory (New problems)]. Moscow-Leningrad: GITTL Publ. 432 p.

20. Zakharov A.Yu., Zubkov V.V. Toward a relativistic microscopic substantiation of thermodynamics: classical relativistic many-particle dynamics. Journal of Physics: Conference Series, 2021, vol. 2052, art. no. 012054. doi: https://doi.org/article/10.1088/1742-6596/2052/1/012054

21. Uchaikin V.V. On time-fractional representation of an open system response. Fractional calculus and applied analysis, 2016, vol. 19, pp. 1306–1315. doi: https://doi.org/10.1515/fca2016-0068

22. Zakharov A.Yu. Probability-free relativistic kinetic theory of classical systems of charged particles. Journal of Physics: Conference Series, 2020, vol. 1658, art. no. 012076. doi: http://doi.org/10.1088/1742-6596/1658/1/012076

23. Zakharov A.Yu., Zubkov V.V. Toward a relativistic microscopic substantiation of thermodynamics: the equilibration mechanism. Journal of Physics: Conference Series, 2021, vol. 2052, art. no. 012055. doi: http://doi.org/10.1088/1742-6596/2052/1/012055

24. Zakharov A.Yu., Zakharov M.A. Microscopic Dynamic mechanism of irreversible thermodynamic equilibration of crystals. Quantum Reports, 2021, vol. 3, no. 4, pp. 724–730. doi: https://doi.org/10.3390/quantum3040045


Review

For citations:


Zakharov A.Yu., Zybkov V.V. Field mechanics as the basis of the classical relativistic kinetic theory. Title in english. 2022;(3(128)):15-20. (In Russ.) https://doi.org/10.34680/2076-8052.2022.3(128).15-20

Views: 50


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2076-8052 (Print)