Preview

Title in english

Advanced search

Control of magnetic resonance parameters in a layered ferrite-piezoelectric structure

https://doi.org/10.34680/2076-8052.2022.3(128).108-110

Abstract

The article presents the results of studying the magnetic resonance spectrum in ferrite-piezoelectric layered structures under the influence of an external electric field on the sample. An external electric field induces a magnetic anisotropy in the ferrite component, which is inhomogeneous in the thickness of the sample. The paper considers the solution of the equation of the magnetization motion of the ferrite component, taking into account the electrically induced magnetic anisotropy. The calculations take into account the bending deformations of the sample. For two-layer and three-layer structures based on yttrium iron garnet and lead zirconate titanate, the values of the broadening of the magnetic resonance line have been obtained. The optimal values of the layer thicknesses for obtaining the maximum broadening of the resonance lines have been found. The results of the work are of interest for the new ferrite-piezoelectric microwave devices.

About the Authors

A. F. Saplev
Новгородский государственный университет имени Ярослава Мудрого
Russian Federation


V. M. Petrov
Новгородский государственный университет имени Ярослава Мудрого
Russian Federation


References

1. Nan C.-W., Bichurin M.I., Dong S., et al. Multiferroic magnetoelectric composites: Historical perspective, status, and future directions. J. Appl. Phys., 2008, vol. 103, p. 031101. doi: https://doi.org/10.1063/1.2836410

2. Fiebig M. Revival of the magnetoelectric effect. J. Phys. D: Appl. Phys., 2005, vol. 38(8), pp. R123-R152.

3. Bichurin M.I., Petrov V.M., Petrov R.V., Tatarenko A.S. Pan Stanford Publishing Pte. Ltd, 2019. 296 p.

4. Bichurin M.I., Kornev I.A., Petrov V.M., Tatarenko A.S., Kiliba Yu.V., and Srinivasan G. Theory of magnetoelectric effects at microwave frequencies in a piezoelectric/magnetostrictive multilayer composite. Phys. Rev. B., 2001, vol. 64(9). doi:10.1103/PhysRevB.64.094409

5. Shastry S., Srinivasan G., Bichurin M.I., Petrov V.M., and Tatarenko A.S. Microwave magnetoelectric effects in single crystal bilayers of yttrium iron garnet and lead magnesium niobate-lead titanate Phys. Rev. B., 2004, vol. 70(6), p. 064416.

6. Pettiford C., Dasgupta S., Lou J., Yoon S. D., and Sun N. X. Bias Field Effects on Microwave Frequency Behavior of PZT/YIG Magnetoelectric Bilayer. IEEE Transactions on Magnetics, 2007, vol. 43(7), p. 3343.

7. Liu M., Zhou Z., Nan T., Howe B.M., Brown G.J., and Sun N.X. Voltage Tuning of Ferromagnetic Resonance with Bistable Magnetization Switching in Energy-Efficient Magnetoelectric Composites. Adv. Mater., 2013, vol. 25, p. 1435. doi:10.1002/adma.201203792

8. Dong G., Wang T., Liu a.o. H. Strain-Induced Magnetoelectric Coupling in Fe3O4/BaTiO3 Nanopillar Composites. ACS Appl. Mater. Interfaces, 2022, vol. 14, no. 11, pp. 13925–13931. doi: https://doi.org/10.1021/acsami.2c00058

9. Tatarenko S., Bichurin M.I. Microwave Magnetoelectric Devices. Advances in Condensed Matter Physics, 2012, p. 286562. doi: https://doi.org/10.1155/2012/286562

10. Timoshenko S., Woinowsky-Krieger S. Theory of plates and shells. Mc Oraw-Hill Book Company, Inc, New York Toronto London, 1959.


Review

For citations:


Saplev A.F., Petrov V.M. Control of magnetic resonance parameters in a layered ferrite-piezoelectric structure. Title in english. 2022;(3(128)):108-110. (In Russ.) https://doi.org/10.34680/2076-8052.2022.3(128).108-110

Views: 41


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2076-8052 (Print)