Preview

Title in english

Advanced search

Application of magnetoelectric gradient structures

https://doi.org/10.34680/2076-8052.2022.3(128).102-107

Abstract

The paper outlines the basic principles of applying layered structures of a new type, magnetoelectric gradient structures, in the design of electronically controlled microwave devices. It is shown that magnetoelectric gradient structures are complex composites that consist of composite materials including a layered multiferroic and an artificial dielectric. On the basis of a previously constructed mathematical model by numerical simulation, the spectra of natural waves propagating in a magnetoelectric gradient structure have been obtained at different values of the applied external electric field and the relative permittivity of the artificial dielectric layer. The mutually contradictory nature of the influence of these factors on dispersion characteristics has been established, which lays the foundation for the development of design principles for new ultra-high-frequency devices, based on the layered composite material presented in the study.

About the Authors

A. O. Nikitin
Новгородский государственный университет имени Ярослава Мудрого
Russian Federation


V. A. Kiselev
Новгородский государственный университет имени Ярослава Мудрого
Russian Federation


V. A. Misilin
Новгородский государственный университет имени Ярослава Мудрого
Russian Federation


R. V. Petrov
Новгородский государственный университет имени Ярослава Мудрого
Russian Federation


References

1. Nikitin A.O., Petrov R.V. Magnetoelectric gradient structures. Phys.: Conf. Ser., 2021, vol. 2052, art. no. 012029, pp. 1–9. doi: https://doi.org/10.1088/1742-6596/2052/1/012029

2. Nikitin A.O., Petrov R.V., Havanova M.A. Control of magnetoelectric antenna by electric field. CriMiCo'2019, ITM Web of Conferences, 2019, vol. 30(1), art. no. 05028, pp. 1–9. doi: https://doi.org/10.1051/itmconf/20193005028

3. Nan C.-W., Bichurin M.I., Dong S., Viehland D., Srinivasan G. Multiferroic magnetoelectric composites: historical perspective, status, and future directions. J. of Appl. Phys., 2008, vol. 103(3), art. no. 031101, pp. 1–35. doi: https://doi.org/10.1063/1.2836410

4. Bichurin M.I., Petrov V.M., Petrov R.V., Tatarenko A.S. Magnetoelectric composites. Singapore, Pan Standford Publ., 2019. 280 p.

5. Demidov V.E., Kalinikos B.A. The spectrum of dipoleexchange spin waves in tangentially-magnetized metalferroelectric-ferromagnet-ferroelectric-metal sandwich structures. Tech. Phys. Let., 2000, vol. 26, pp. 273–275. doi: https://doi.org/10.1134/1.1262815

6. Demidov V.E., Kalinikos B.A. Spectra of exchange dipole electromagnetic-spin waves in asymmetric metal-insulatorferromagnetic-insulator-metal systems. Tech. Phys., 2001, vol. 46(2), pp. 219–222. doi: https://doi.org/10.1134/1.1349280

7. Nikitin A.A., Ustinov A.B., Semenov A.A., Kalinikos B.A. A microwave phase shifter based on a planar ferriteferroelectric thin-film structure. Tech. Phys. Let., 2014, vol. 40, pp.277–279. doi: https://doi.org/10.1134/S1063785014040087

8. Ustinov A.B., Tiberkevich V.S., Srinivasan G., et al. Electric field tunable ferrite-ferroelectric hybrid wave microwave resonators: Experiment and theory. J. Appl. Phys., 2006, vol. 100, art. no. 093905, pp. 1–6. doi: https://doi.org/10.1063/1.2372575

9. Petrov R.V., Tatarenko A.S., Srinivasan G., Mantese J.V. Antenna miniaturization with ferrite-ferroelectric composites. Mic. Opt. Tech. Lett., 2008, vol. 50, pp. 3155–3157. doi: https://doi.org/10.1002/mop.23939

10. Bichurin M.I., Petrov R.V., Vorobyev Yu.D., Kiliba Yu.V. Polosovoy perestraivayemyy magnitoelektricheskiy SVCH fil'tr [Bandpass tunable magnetoelectric microwave filter]. Sb. dokl. Mezhdunar. foruma po problemam nauki, tekhniki i obrazovaniya [Proc. of the International Forum on Problems of Science, Technology and Education]. Moscow, 1997, pp. 234–238.

11. Tatarenko A.S., Srinivasan G., Filippov D.A. Magnetoelectric microwave attenuator. Electronics Lett., 2007, vol. 43(12), pp. 674–675. doi: https://doi.org/10.1049/el:20070949

12. Bichurin M.I., Petrov R.V. Magnetoelectric Phasers for PAS. Proc. of the 2nd International Conference and Exhibition on Satellite Communications (ICSC’96). Moscow, 1996, pp. 172–178. doi: https://doi.org/10.1109/ICSC.1996.864274

13. Bichurin M.I., Petrov R.V., Solov'jov I.N., Solov'jov A.N., Kovalenko D.V. Issledovanie magnitojelektricheskogo SVCh giratora [Research of a magnetoelectric microwave gyrator]. Sovremennyye problemy nauki i obrazovaniya — Modern problems of science and education, 2012. no. 2. Available at: https://science-education.ru/ru/article/view?id=5370 (accessed: 12.05.2022).

14. Kazanskij V.B., Tuz V.R., Hardikov Jelektrodinamicheskaja teorija kompozitnyh sred: monografija [Electrodynamic theory of composite media: monograph]. Kharkiv, V. N. Karazin Kharkiv National University Publ., 2015. 220 p.

15. Zhang Y., Aratani Y., Nakazima H. A microwave freespace method using artificial lens with anti-reflection layer. Sens. Imaging, 2017, vol. 18(17), pp. 1–12. doi: https://doi.org/10.1007/s11220-017-0166-7

16. Awai I. Artificial dielectric resonators for miniaturized filters. IEEE Microwave Magazine, 2008, vol. 9(5), pp. 55–64. doi: https://doi.org/10.1109/MMM.2008.927709

17. Zhang Y., Imahori T., Fujita Y. Artificial material for patch antenna gain enhancement and its application in microwave free-space method. Int. Conf. on Electromagnetic in Advanced Applications, 2019, p. 203. doi: https://doi.org/10.1109/ICEAA.2019.8879209

18. Biber S., Richter J., Martius S., Schmidt L. Design of artificial dielectrics for ant-reflectioncoatings. 33 Eur. Microwave Conf. Proceedings, 2003, vol. 8024048, pp. 1115–1118.

19. Ang Ch., Yu Zh. DC electric-field dependence of the dielectric constant in polar dielectrics: Multipolarization mechanism model. Physical review B., 2004, vol. 69, art. no. 174109, pp. 1–8. doi: https://doi.org/10.1103/PhysRevB.69.174109

20. Vopson M.V. Fundamental of multiferroic materials and their possible application. Critical Reviews in Solid State and Materials Sciences, 2015, vol. 40(4), pp. 223–250. doi: https://doi.org/10.1080/10408436.2014.992584

21. Lokk E.G., Vashkovskii A.V. Diagrammy napravlennosti izluchenija, voznikajushhego v rezul'tate preobrazovanija poverhnostnyh magnitostaticheskih voln v jelektromagnitnye [Directional diagrams of radiation resulting from the transformation of surface magnetostatic waves into electromagnetic waves]. Radiotekhnika i elektronika, 1995, vol.7, pp. 1030–1037.

22. Vashkovskii A.V., Lokk E.G. On the parameters of patterns of radiation arising in the process of transformation of a magnetostatic surface wave into an electromagnetic wave. J. of Communication Technology and Electronics, 2004, vol. 49(8), pp. 904–909.

23. Vashkovskii A.V., Lokk E.G. The mechanism of transformation of a magnetostatic surface wave into an electromagnetic wave. J. of Communication Technology and Electronics, 2009, vol. 54(4), pp. 456–467. doi: https://doi.org/10.1134/S1064226909040111


Review

For citations:


Nikitin A.O., Kiselev V.A., Misilin V.A., Petrov R.V. Application of magnetoelectric gradient structures. Title in english. 2022;(3(128)):102-107. (In Russ.) https://doi.org/10.34680/2076-8052.2022.3(128).102-107

Views: 39


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2076-8052 (Print)