Research of the coupling of resonators of a microwave magnetoelectric band-pass filter using computer simulation
https://doi.org/10.34680/2076-8052.2022.3(128).96-101
Abstract
In modern time, the successful development of electronic technology is due to the research and industrial usage of new materials with a wide range of physical properties to design on their basis devices operating on new physical principles. The last few decades have been characterized by a significant increase in activity in the field of materials research, in which the relationship between electrical and magnetic properties is manifested. Of particular interest are magnetoelectric materials whose properties are manifested at room temperatures and relatively low magnetic fields since such materials are promising for practical applications. The design and principle of operation of a magnetoelectric microwave filter is presented. The simulation was carried out in the HFSS Ansoft program. The amplitude-frequency characteristics of the filter were obtained.
About the Authors
V. N. LobekinRussian Federation
R. G. Kafarov
Russian Federation
A. S. Tatarenko
Russian Federation
V. E. Muravev
Russian Federation
References
1. Curie P. Sur la symétrie dans les phénomènes physiques, symétrie d'un champ électrique et d'un champ magnétique. J. Phys. Theor. Appl., 1894, vol.3, p. 393.
2. Debye P. Bemerkung zu einigen neuen Versuchen über einen magneto-elektrischen Richteffekt. Z. Phys., 1926, vol. 36, p. 300.
3. Dzyaloshinskii I.E. Magnetoelectric effects in antiferromagnetics. Sov. Phys. JETP, 1959, vol.10, p. 628. Available at: http://www.jetp.ac.ru/cgi-bin/dn/e_010_03_0628.pdf.
4. Astrov D.N. The magnetoelectric effect in antiferromagnetics. Sov. Phys. JETP, 1960, vol. 11, p. 708. Available at: http://www.jetp.ac.ru/cgi-bin/dn/e_011_03_0708.pdf.
5. Astrov D. N. Magnetoelectric effect in chromium oxide. Sov. Phys. JETP, 1961, vol. 13, p. 729. Available at: http://www.jetp.ac.ru/cgi-bin/dn/e_013_04_0729.pdf.
6. Ascher E., Rieder H., Schmid H., Stossel H. Some Properties of Ferromagnetoelectric Nickel-Iodine Boracite, Ni3B7O13I. J. Appl. Phys., 1966, vol. 37, p. 1404.
7. Den Boomgaard J. Van, Terrell D. R., Born R. A. J., Giller H. F. J. I. An in situ grown eutectic magnetoelectric composite material. J. Mater. Sci., 1974, vol. 9, p. 1705.
8. Run A. M. J. G. Van, Terrell D. R., and Scholing J. H. An in situ grown eutectic magnetoelectric composite material. J. Mater. Sci., 1974, vol. 9, p. 1710.
9. Den Boomgaard J. Van, Run A. M. J. G. Van, Suchtelen J. Van. Magnetoelectricity in piezoelectric-magnetostrictive composites. Ferroelectrics, 1976, vol. 10, p. 295.
10. Ohno H., Chiba D., Matsukura F., Omiya T., Abe E., Dietl T., Ohno Y., Ohtani K. Electric-field control of ferromagnetism. Nature, 2000, vol. 408, p. 944.
11. Chiba D., Yamanouchi M., Matsukura F., and Ohno H. Electrical manipulation of magnetization reversal in a ferromagnetic semiconductor. Science, 2003, vol. 301, p. 943.
12. Wang Y., Li J., Viehland D. Magnetoelectrics for magnetic sensor applications: status, challenges and perspectives. Mater. Today, 2014, vol. 17, p. 269.
13. Hu J.-M., Yang T., Wang J., Huang H., Zhang J., Chen L.-Q., Nan C.-W. Purely Electric-Field-Driven Perpendicular Magnetization Reversal. Nano Lett. 15, 616 (2015).
14. Carman G. P., Sun N. Strain-mediated magnetoelectrics: Turning science fiction into reality. MRS Bull., 2018, vol. 43, p. 822.
15. Viehland D., Wuttig M., McCord J., Quandt E. Magnetoelectric magnetic field sensors. MRS Bull., 2018, vol. 43, p. 834.
16. Domann J., Wu T., Chung T.-K., Carman G. Strain-mediated magnetoelectric storage, transmission, and processing: Putting the squeeze on data. MRS Bull., 2018, vol. 43, p. 848.
17. Brigadnov I.A., Dorfmann A. Mathematical modeling of magneto-sensitive elastomers, International Journal of Solids and Structures, 2003, vol. 40, iss. 18, pp. 4659–4674.
18. Hu J.-M., Nan C.-W. Opportunities and challenges for magnetoelectric devices, APL Mater., 2019, vol. 7, p. 080905.
19. Srinivasan G., Tatarenko A.S., Bichurin M.I. Electrically tunable microwave filters based on ferromagnetic resonance in ferrite-ferroelectric bilayers. Electronics Letters, 2005, vol. 41, no. 10, p. 596.
20. Bichurin M.I., Petrov V.M., Petrov R.V., Kapralov G.N., Kiliba Yu.V., Bukashev F.I., Smirnov A.Yu., Tatarenko A.S. Magnetoelectric Microwave Devices. Ferroelectrics, 2002, vol. 280, p. 211.
21. Bichurin M.I., Kornev I.A., Petrov V.M., Tatarenko A.S., Kiliba Yu.V., Srinivasan G. Theory of magnetoelectric effects at microwave frequencies in a piezoelectric/magnetostrictive multilayer composite. Phys. Rev. B., 2001, vol. 64, 094409, pp. 1-6.
22. Vasilev B.Y., Tung L.Van, Ilukena D. Research on the switching algorithm of voltage vectors in the direct torque control system. International Russian Automation Conference (RusAutoCon), 2018, pp. 1–7.
23. Vasilev B.U., Zyrin V.O. Algorithmic methods to improve the semiconductor converter performance effectiveness. International Siberian Conference on Control and Communications (SIBCON), 2016, pp. 1–6.
24. Tatarenko A.S., Gheevarughese V., Srinivasan G., et al. Microwave magnetoelectric effects in ferrite—piezoelectric composites and dual electric and magnetic field tunable filters. J Electroceram, 2010, vol. 24, pp. 5–9.
Review
For citations:
Lobekin V.N., Kafarov R.G., Tatarenko A.S., Muravev V.E. Research of the coupling of resonators of a microwave magnetoelectric band-pass filter using computer simulation. Title in english. 2022;(3(128)):96-101. (In Russ.) https://doi.org/10.34680/2076-8052.2022.3(128).96-101