Modeling of a metastructure based on split-ring resonators including the ferrite elements
https://doi.org/10.34680/2076-8052.2022.3(128).91-95
Abstract
A computer simulation of a metastructure based on four split-ring resonators with the inclusion of YIG (yttrium-iron garnet) ferrite elements on a GGG (gallium-gadolinium garnet) substrate was carried out in order to study the possibility of tuning the ferromagnetic resonance (FMR) line of 4 ferrite resonators under the influence of an external magnetic field. The design of a metastructure based on four split-ring resonators with YIG-GGG ferrite resonators and an equivalent resonator connection circuit are presented. This structure was considered earlier in terms of use for the development of a microstrip filter. The simulation was carried out using the Ansoft HFSS 3D modeling tool for RF/microwave fields. The obtained amplitude-frequency characteristics of the FMR show the possibility of resonance line tuning under the influence of an external magnetic field.
About the Authors
V. N. LobekinRussian Federation
M. I. Bichurin
Russian Federation
References
1. Gil M., Bonache J., Selga J., et al. Broadband resonanttype metamaterial transmission lines. IEEE Microw. Wireless Compon. Lett., 2007, vol. 17(2), pp. 97–99. doi: https://doi.org/10.1109/LMWC.2006.890327
2. Withayachumnankul W., Jaruwongrungsee K., Tuantranont A., et al. Metamaterial-based microfluidic sensor for dielectric characterization. Sensors Actuators A: Physical, 2013, vol. 189, pp. 233–237. doi: https://doi.org/10.1016/j.sna.2012.10.027
3. Naqui J., Durán-Sindreu M., Martín F. Alignment and position sensors based on split ring resonator. Sensors, 2012, vol. 12(9), pp. 11790–11797. doi: https://doi.org/10.3390/s120911790
4. Al-Naib I.A., Jansen C., and Koch M. Single metal layer CPW metamaterial bandpass filter. Progress Electromag. Res. Lett., 2010, vol. 17, pp. 153–161.
5. Liu J.C., Shu D.-S., Zeng B.H., Chang D.-C. Improved equivalent circuits for complementary split-ring resonatorbased high-pass filter with c-shaped couplings. IET Microw. Antennas Propag., 2008, vol. 2(6), pp. 622–626.
6. Mondal P., Mandal M., Chaktabarty A., Sanyal S. Compact bandpass filters with wide controllable fractional bandwidth. IEEE Microw. Wireless Compon. Lett., 2006, vol. 16(10), pp. 540–542. doi: https://doi.org/10.1109/LMWC.2006.882401
7. Gil M., Bonache J., García-García J., et al. Composite right/left-handed metamaterial transmission lines based on complementary split-rings resonators and their applications to very wideband and compact filter design. IEEE Trans. Microw. Theory Tech., 2007, vol. 55(6), pp. 1296–1304. doi: https://doi.org/10.1109/TMTT.2007.897755
8. Luo X., Qian H., Ma J.-G., Li E. Wideband bandpass filter with excellent selectivity using new CSRR-based resonator. Electron. Lett., 2010, vol. 46 (20), pp. 1390–1391. doi: https://doi.org/10.1049/el.2010.1817
9. Liu J.-C., Lin H.-C., Zeng B.-H., et al. An improved equivalent circuitmodel for CSRR-based bandpass filter design with even and odd modes. IEEE Microw.Wireless Compon. Lett., 2010, vol. 20(4), pp. 193–195. doi: https://doi.org/10.1109/LMWC.2010.2042548
10. Lobekin V.N., Bichurin M.I., Zueva E.A. Primeneniye metastruktury na osnove chetyrekh split-kol'tsevykh rezonatorov [Application of metasctructure based on four split-ring resonators]. Vestnik NovSU. Issue: Engineering Sciences, 2021, no. 4(125), pp. 43–46. doi: https://doi.org/10.34680/2076-8052.2021.4(125).43-46
11. Hossain M.I., Faruque M.R.I., Islam M.T., Ali M.T. Design and analysis of coupled-resonator reconfigurable antenna. Applied Physics A, 2016, vol. 122, art. no. 2. doi: https://doi.org/10.1007/s00339-015-9520-6
Review
For citations:
Lobekin V.N., Bichurin M.I. Modeling of a metastructure based on split-ring resonators including the ferrite elements. Title in english. 2022;(3(128)):91-95. (In Russ.) https://doi.org/10.34680/2076-8052.2022.3(128).91-95