Preview

Title in english

Advanced search

Hyperspectral visible range system based on the Fabry–Pérot interferometer

https://doi.org/10.34680/2076-8052.2022.3(128).78-83

Abstract

The article discusses the main differences between hyperspectral systems (HSS) and multispectral systems (MSS), as well as the principles of formation of hyperspectral images (data hypercube) and their processing in order to analyze the spectral characteristics of the objects under study. In addition, options for constructing the HSS of the visible range based on the methods of spatial and spectral scanning are considered. The HSS of the visible range based on the Fabry-Pérot interferometer is described in detail. Its block diagram and operation principle are given. The technical characteristics of the designed HSS are analyzed, and the issues of mathematical and semi-natural modeling of the hyperspectral system are considered, which, in turn, allows minimizing errors associated with the analysis of spectral characteristics, and also provides the possibility of testing the algorithms of the HSS when solving object detection problems. Analytical expressions are given to evaluate the spectral selectivity of the system.

About the Authors

V. M. Gareev
Новгородский государственный университет имени Ярослава Мудрого
Russian Federation


M. V. Gareev
Новгородский государственный университет имени Ярослава Мудрого
Russian Federation


N. I. Lebedinsky
Новгородский государственный университет имени Ярослава Мудрого
Russian Federation


N. P. Kornyshev
Новгородский государственный университет имени Ярослава Мудрого
Russian Federation


D. A. Serebryakov
Новгородский государственный университет имени Ярослава Мудрого
Russian Federation


References

1. Belsky A.B. Primeneniye giperspektrometrov dlya resheniya zadach po obnaruzheniyu, raspoznavaniyu ob"yektov v sostave vertoletov [The use of hyperspectrometers for solving problems of detecting and recognizing objects in helicopters]. Aktual'nyye voprosy issledovaniy v avionike: teoriya, obsluzhivaniye, razrabotki. Sb. nauch. st. po mat. VI Mezhdunar. nauch.-prakt. konf. «AVIATOR» [Topical issues of research in avionics: theory, maintenance, development. Collection of scientific articles based on the materials of the VI International Scientific and Practical Conference "AVIATOR"], 2019, pp. 91–97.

2. Lu G., Fei B. Medical hyperspectral imaging: A review. J Biomed. Opt., 2014, vol. 19, art. no. 010901. doi: https://doi.org/10.1117/1.JBO.19.1.010901

3. Feng Y.Z., Sun D.W. Application of hyperspectral imaging in food safety inspection and control: A review. Crit. Rev. food. sci., 2012, vol. 52(11), pp. 1039–1058. doi: https://doi.org/10.1080/10408398.2011.651542

4. Adão T., Hruška J., Pádua L., et al. Hyperspectral imaging: A review on UAV-based sensors, data processing and applications for agriculture and forestry. Remote sens., 2017, vol. 9, art. no. 1110. doi: https://doi.org/10.3390/rs9111110

5. Klein M.E., Aalderink B.J., Padoan R., et al. Quantitative hyperspectral reflectance imaging,. Sensors, 2008, vol. 8(9), pp. 5576–5618. doi: https://doi.org/10.3390/s8095576

6. Rosi F., Miliani C., Braun R., et al. Noninvasive analysis of paintings by mid-infrared hyperspectral imaging. Angew. Chem. Int. Ed. Eng., 2013, vol. 52(20), pp. 5258–5261. doi: https://doi.org/10.1002/anie.201209929

7. Nie Y., Xiangli B., Zhou J., Wei X. Design of airborne imaging spectrometer based on curved prism. Proc. SPIE, 2011, vol. 8197, art. no. 81970U. doi: https://doi.org/10.1117/12.904270

8. Zhou G., Cheo K. K. L., Du Y., et al. Hyperspectral imaging using a microelectrical-mechanical-systems-based in-plane vibratory grating scanner with a single photodetector. Opt. Lett., 2009, vol. 34(6), pp. 764–766. doi: https://doi.org/10.1364/ OL.34.000764

9. Gat N. Imaging spectroscopy using tunable filters: a review. Proc. SPIE, 2000, vol. 4056, pp. 50–64. doi: https://doi.org/10.1117/12.381686

10. Barducci A., Guzzi D., Lastri C., et al. Theoretical aspects of Fourier transform spectrometry and common path triangular interferometers. Opt. Express, 2010, vol. 18(11), pp. 11622–11649. doi: https://doi.org/10.1364/OE.18.011622

11. Naylor D.A., Gom B.G. SCUBA-2 imaging Fourier transform spectrometer. Proc. SPIE, 2004, vol. 5159, pp. 91–101. doi: https://doi.org/10.1117/12.506395

12. Alcock R., Coupland J.A. A compact, high numerical aperture imaging Fourier transform spectrometer and its application. Meas. Sci. Technol., 2006, vol. 17(11), pp. 2861–2868. doi: http://dx.doi.org/10.1088/0957-0233/17/11/001

13. Pisani M., Zucco M. Fourier transform based hyperspectral imaging. Fourier Transforms — Approach to Scientific Principles, 2011, chap. 21. Available at: https://www.intechopen.com/chapters/15162 (Accessed: 30.05.2022).

14. Schumann L.W., Lomheim T.S. Infrared hyperspectral imaging Fourier transform and dispersive spectrometers: comparison of signal-to-noise based performance. Proc. SPIE, 2002, vol. 4480, pp. 1–14. doi: https://doi.org/10.1117/12.453326

15. Fellgett P.B. On the maximum sensitivity and practical characteristics of radiation detectors. J. Opt. Soc. Am., 1949, vol. 39(11), pp. 970–976. doi: 10.1364/JOSA.39.000970


Review

For citations:


Gareev V.M., Gareev M.V., Lebedinsky N.I., Kornyshev N.P., Serebryakov D.A. Hyperspectral visible range system based on the Fabry–Pérot interferometer. Title in english. 2022;(3(128)):78-83. (In Russ.) https://doi.org/10.34680/2076-8052.2022.3(128).78-83

Views: 50


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2076-8052 (Print)