РАДИОТЕХНИКА И СВЯЗЬ

УДК 621.397: 519.65 DOI: 10.34680/2076-8052.2024.3(137).478-488 Поступила в редакцию / Received 03.07.2024 ГРНТИ 47.51.39+27.41.24 Специальность ВАК 2.2.13 Принята к публикации / Accepted 19.09.2024

Научная статья

КОМПЕНСАЦИЯ ЭФФЕКТА НАРЦИССА ДЛЯ ОПТИЧЕСКОЙ СИСТЕМЫ С ПЕРЕМЕННЫМ ФОКУСНЫМ РАССТОЯНИЕМ ПРИ РАЗЛИЧНЫХ ДИСТАНЦИЯХ ФОКУСИРОВКИ

Гарбарь С. В., Ласков И. А.

АО «ЭЛСИ» (Великий Новгород, Россия)

Аннотация Охлаждаемые инфракрасные детекторы зачастую подвержены эффекту Нарцисса. В работе рассмотрен алгоритмический подход к коррекции эффекта для оптической системы с переменным фокусным расстоянием при различных дистанциях фокусировки, основанный на интерполяции некоторого базового набора корректирующих кадров. Отдельно рассматривается интерполяция при изменении фокусировки. Представлена процедура интерполяции при изменении обоих параметров. Описаны требования к базовому набору компенсирующих кадров. Рассмотрен пример применения алгоритма.

Ключевые слова: эффект Нарцисса, инфракрасный детектор

Для цитирования: Гарбарь С. В., Ласков И. А. Компенсация эффекта нарцисса для оптической системы с переменным фокусным расстоянием при различных дистанциях фокусировки // Вестник НовГУ. 2024. 3(137). 478-488. DOI: 10.34680/2076-8052.2024.3(137).478-488

Research Article

COMPENSATION OF NARCISSUS EFFECT FOR AN OPTICAL SYSTEM WITH VARIABLE FOCAL LENGTH FOR DIFFERENT FOCUSING DISTANCES

Garbar S. V., Laskov I. A.

JSC "ELSI" (Veliky Novgorod, Russia)

Abstract Cooled infrared detectors are often subject to Narcissus effect. Article describes an algorithmic approach to its correction for an optical system with variable focus length for different focusing distances. It is based on interpolating of a small number of base correcting frames. Procedures of interpolation for the case of changing only focus length or only focusing distance are described. Procedure for the case of changing the both parameters simultaneously is also presented. Requirements for base set of correcting frames are described. An example of algorithm application is also presented.

Keywords: Narcissus effect, infrared detector

For citation: Garbar S. V., Laskov I. A. Compensation of narcissus effect for an optical system with variable focal length for different focusing distances // Vestnik NovSU. 2024. 3 (137). 478-488. DOI: 10.34680/2076-8052.2024.3(137).478-488

Введение

Эффект Нарцисса возникает в том случае, когда инфракрасный детектор фиксирует отражения собственных холодных поверхностей в более тёплых поверхностях оптической системы — линзах объектива и защитных стёклах [1].

В центральной части изображения наблюдаются изображения колец или пятен, накладывающиеся на изображение реального объекта.

Оптическая система может состоять из большого количества отражающих поверхностей, соответственно, картина Нарцисса представляет собой сумму отдельных отражений (от различных поверхностей). Минимизация эффекта Нарцисса – это одна из задач, которая решается при разработке оптической системы [2-4].

Абсолютная величина ошибки, вносимой эффектом Нарцисса, незначительна. Влияние эффектно визуально наиболее заметно на однородных сценах и/или при высоком уровне контрастирования. В противном случае им можно пренебречь. В работах [5, 6] рассмотрены статистические подходы к компенсации эффекта. Дополнительно на эффект Нарцисса может оказать влияние изменение температуры оптической системы в процессе её работы. Подход к компенсации этого эффекта рассмотрен, например, в [7].

В соответствии с линейной моделью неоднородности изображения [8], каждый отдельный пиксель с координатами i,j имеет собственные коэффициент усиления g_{ij} и смещение o_{ij} . Различие в усилении и смещении каждого пикселя являются причиной наличия на получаемом изображении статических шумов, которые для охлаждаемого тепловизионного детектора требуют обязательной коррекции. Для линейной (также зачастую называемой двухточечной) коррекции пикселя с координатами i,j используется преобразование по формуле

$$v'_{ij} = g_{ij} \cdot v_{ij} + o_{ij}, \tag{1}$$

При фиксированных величинах фокусного расстояния и точки фокусировки эффект Нарцисса может быть рассмотрен как дополнительное низкочастотное смещение для каждого из пикселей [9]. Коррекция предполагает вычитание этого дополнительного смещения $n_{ij}(z,f)$ из каждого пикселя изображения. Совокупность пикселей $n_{ij}(z,f)$ формирует компенсирующий кадр $\mathcal{C}(z,f)$.

Сложность компенсации для системы с изменяемым фокусным расстоянием z либо при изменении дистанции фокусировки f заключается в том, что при их изменении меняется взаимное расположение компонентов оптической системы, а значит и картина эффекта Нарцисса.

Компенсирующий кадр может быть получен как попиксельная разность однородного кадра для данных z,f и кадра, использованного для получения коэффициента усиления g_{ij} и смещения o_{ij} .

Компенсация эффекта Нарцисса может быть реализована как

$$v_{ij}^{"} = v_{ij}^{'} - n_{ij}(z, f) = g_{ij} \cdot v_{ij} + o_{ij} - n_{ij}(z, f), \tag{2}$$

где $n_{ij}(z,f)$ — дополнительное смещение интенсивности пикселя, вызванное эффектом Нарцисса.

Даже незначительные изменения z влекут за собой изменения картины эффекта Нарцисса. Влияние изменения f менее значительны, но тем не менее тоже должны быть учтены. Таким образом, для каждой возможной пары значений z, f нужно иметь отдельный компенсирующий кадр. Как съёмка, так и хранение и загрузка для последующего использования могут представлять сложности.

В данной работе рассматривается задача компенсации эффекта Нарцисса для оптической системы с изменяемым фокусным расстоянием при различных дистанциях фокусировки. При предлагаемом подходе к решению предполагается наличие небольшого количества заранее подготовленных компенсирующих кадров для ограниченного набора значений (z,f), который мы в дальнейшем называем узлами сетки опорных кадров. Для промежуточных значений между узлами предлагается использовать методы интерполяции. Далее рассматривается получение компенсирующего кадра при изменении только одного из параметров z,f относительно узлов сетки, а также нахождение компенсирующего кадра для произвольных значений (z,f). Также приведён пример применения алгоритма.

Получение корректирующего кадра для промежуточных значений фокусного расстояния

Рассмотрим случай, когда имеются два компенсирующих кадра $\mathcal{C}(z_0,f_0)$, $\mathcal{C}(z_1,f_1)$ одинаковой резкости для разных значений фокусного расстояния z_0,z_1 . Поставим задачу получения компенсирующего кадра для промежуточного значения $z \in (z_0;z_1)$. Заметим, что одинаковая резкость кадров не означает того, что дистанции фокусировки объектива одинаковы.

При небольшой разнице между z_0, z_1 сделаем предположение о том, что один из компенсирующих кадров может быть получен из другого растяжением и сдвигом. Также предполагаем, что при не очень значительных изменениях фокусного расстояния зависимость параметров данного аффинного преобразования от z может быть приближена линейной.

Описанное преобразование является частным случаем преобразования, и описывается матрицей:

$$M_{z_0,z_1} = \begin{pmatrix} s_{z_0,z_1} & 0 & \Delta i_{z_0,z_1} \\ 0 & s_{z_0,z_1} & \Delta j_{z_0,z_1} \end{pmatrix}, \tag{3}$$

где s_{z_0,z_1} — коэффициент масштабирования, $\Delta i_{z_0,z_1}$, $\Delta j_{z_0,z_1}$ — сдвиги по соответствующим координатам. В данной матрице обнулены элементы, соответствующие преобразованию поворота, и предполагается, что растяжения по обеим осям одинаковы. В случае если для каких-то конкретных устройств какие-то из этих предположений неверны, матрица может быть выписана в более общем виде.

Промежуточную матрицу определим как матрицу частичного применения данного преобразования. Найдём относительное положение z между z_0, z_1 :

$$r_z = \frac{z - z_0}{z_1 - z_0},\tag{4}$$

Модифицированная матрица имеет вид:

$$M_{z_0,z} = \begin{pmatrix} s_{z_0,z_1}^{r_z} & 0 & r_z \cdot \Delta i_{z_0,z_1} \\ 0 & s_{z_0,z_1}^{r_z} & r_z \cdot \Delta j_{z_0,z_1} \end{pmatrix}, \tag{5}$$

где $s_{z_0,z_1}^{r_Z}=e^{r_z\cdot \ln s_{z_0,z_1}}$ — взвешенное среднее геометрическое чисел s_{z_0,z_1} и единицы. Значение $s_{z_0,z_1}=1$ здесь означает отсутствие масштабирования. Если кадры незначительно отличаются друг от друга, то s_{z_0,z_1} будет близким к единице, а значит, среднее геометрическое можно на практике заменить на среднее арифметическое.

Применение преобразования, описываемого матрицей $M_{z_0,z}$, к кадру $\mathcal{C}(z_0,f_0)$ позволяет получить приближение к значению корректирующего кадра для фокусного расстояния z той же резкости, что исходный кадр.

Заметим, что если $r_z>0.5$, то разумным будет обратное преобразование компенсирующего кадра $\mathcal{C}(z_1,f_1)$, соответствующее фокусному расстоянию z_1 . Матрица обратного частичного аффинного преобразования в этом случае имеет вид:

$$M_{z_1,z} = \begin{pmatrix} s_{z_0,z_1}^{-(1-r_z)} & 0 & -(1-r_z) \cdot s_{z_0,z_1}^{-1} \Delta i_{z_0,z_1} \\ 0 & s_{z_0,z_1}^{-(1-r_z)} & -s_{z_0,z_1}^{-1} (1-r_z) \cdot \Delta j_{z_0,z_1} \end{pmatrix}, \tag{6}$$

Корректирующий кадр можно сформировать как взвешенное среднее кадров, полученных применением аффинного преобразования, описанного матрицей $M_{z_0,z}$, к кадру $\mathcal{C}(z_0,f_0)$ с весом $(1-r_z)$ и применением аффинного преобразования, описанного матрицей $M_{z_1,z}$, к кадру $\mathcal{C}(z_1,f_1)$ с весом r_z . Полученный корректирующий кадр будет линейной комбинацией кадров $\mathcal{C}(z_0,f_0)$ и $\mathcal{C}(z_1,f_1)$. При этом будет отсутствовать резкая смена корректирующего кадра при плавном изменении фокусного расстояния при $r_z=0,5$.

Для получения матрицы перехода между базовыми кадрами можно применить несколько подходов. Аффинное преобразование однозначно определятся координатами трёх точек, не лежащих на одной прямой, и их образов. Такие характерные точки и их образы могут быть фиксированы относительно картины эффекта Нарцисса на $C(z_0,f_0)$ и $C(z_1,f_1)$. Возможно также применение методов глобальной оптимизации относительно параметров $s_{z_0,z_1},\ \Delta i_{z_0,z_1},\ \Delta j_{z_0,z_1},\$ при этом может потребоваться предобработка базовых кадров, например, контрастирование и размытие. Конкретные параметры предобработки будут зависеть от используемой оптической системы. В качестве функции потерь можно рассматривать дисперсию разности между целевым и преобразованным кадрами.

Получение корректирующего кадра для промежуточных значений дистанции фокусировки

Чтобы получить картину эффекта Нарцисса одинаковой резкости при разных фокусных расстояниях, может оказаться необходимым установить разные величины дистанции фокусировки. То есть для каждого значения z значение f, для которого эффект Нарцисса имеет наибольшую резкость. Множество всех пар значений z и f, для которых выполняется это условие, далее будем называть линией резкой картины эффекта Нарцисса на плоскости возможных значений (z,f).

При фиксированной величине z изменение f как в сторону увеличения, так и уменьшения относительно точки на линии резкой картины эффекта Нарцисса, уменьшает резкость картины.

При фиксированном значении фокусного расстояния z поставим задачу нахождения компенсирующего кадра для некоторой дистанции фокусировки f. Считаем, что мы имеем пару компенсирующих кадров $C(z,f_0), C(z,f_1), f \in [f_0,f_1)$. Не уменьшая общности, будем предполагать, что кадр $C(z,f_1)$ соответствует менее резкой картине Нарцисса, чем $C(z,f_0)$.

Найдём относительное положение f между f_0, f_1 :

$$r_f = \frac{f - f_0}{f_1 - f_0},\tag{7}$$

Будем считать, что при достаточно близких f_0 , f_1 уменьшение резкости картины Нарцисса может быть приближено гауссовым размытием с ядром размера k, и при небольших изменениях f зависимость k от r_f приблизительно линейна.

Тогда получение компенсирующего кадра для пары параметров (z,f) может быть реализовано как гауссово размытие кадра $\mathcal{C}(z,f_0)$ с ядром размера $r_f \cdot k$ (округлённым до ближайшего допустимого значения).

Подбор подходящего значения k также можно осуществить, предварительно обрабатывая кадры и оценивая дисперсию разности между ними при различных размерах ядра свёртки. Параметры предобработки также будут зависеть от параметров используемой оптической системы.

Получение корректирующего кадра для произвольных значений фокусного расстояния и дистанции фокусировки

Рассмотрим решение задачи получения компенсирующего кадра для произвольных значений (z,f). Для решения задачи предполагаем наличие набора компенсирующих кадров $C(z_0,f_0)$, $C(z_1,f_1)$,..., $C(z_n,f_n)$, где точки (z_0,f_0) , (z_1,f_1) ,..., (z_n,f_n) находятся на линии резкой картины эффекта Нарцисса. Данный набор позволяет получить приближение промежуточного компенсирующего кадра, также лежащего на этой линии, для этого следует предварительно найти все матрицы преобразования между соседними кадрами.

Для получения компенсирующих кадров меньшей резкости при уменьшении и увеличении дистанции фокусировки выберем набор смещений относительно линии резкой картины эффекта Нарцисса $(d_{-l},d_{-(l-1)},...,d_{-1},0,d_1,d_2,...,d_k)$ таких, что $d_{-l} < d_{-(l-1)} < \cdots < d_{-1} < 0 < d_1 < d_2 < \cdots < d_k$. Для каждого d_j , j = -l,...,k получим компенсирующие кадры $C(z_i,f_i+d_j)$, где $C(z_i,f_i)$ принадлежит линии резкой картины эффекта Нарцисса.

Таким образом, построена «сетка» опорных кадров на плоскости возможных значений фокусных расстояний и дистанций фокусировки.

Для каждой точки сетки с d=0 (то есть для кадров, обладающих максимальной резкостью, лежащих на линии резкой картины Нарцисса) следует найти матрицу перехода из соседней точки с d=0. Для каждой точки сетки с $d\neq 0$ следует найти ядро размытия кадра с соседним меньшим по модулю значением смещения дистанции фокусировки.

Для имеющегося целевого значения z нужно выбрать соседние значения z_{i-1}, z_i , которые зададут опорные кадры, $z \in [z_{i-1}, z_i), \ i=1,...,n$. Найдём смещение целевого значения f относительно значения дистанции фокусировки для полученного кадра заданной резкости

$$d = f - \left(f_{i-1} + \frac{z - z_{i-1}}{z_i - z_{i-1}} \cdot (f_i - f_{i-1}) \right), \tag{8}$$

где f_{i-1}, f_i — значения дистанции фокусировки для использованных ранее опорных кадров.

Для полученного значения смещения определяем, между которыми значениями d_{i-1}, d_i оно расположено.

При помощи процедуры, описанной в первом разделе статьи, получаем кадр возможно более резкий, чем необходимо, из компенсирующих кадров $\mathcal{C}(z_{i-1},f_{i-1}+d_{j-1})$ и $\mathcal{C}(z_i,f_i+d_{j-1})$. Далее следует получить более размытый вариант этого кадра, для этого усредним значения размеров ядер размытия для точек $(z_{i-1},f_{i-1}+d_j)$ и (z_i,f_i+d_j) .

Таким образом получен компенсирующий кадр для заданных значений (z, f).

Пример применения алгоритма

В качестве примера рассмотрим систему, состоящую из инфракрасного детектора с разрешением 640×512 и объектива с переменным фокусным расстоянием 15–300mm f/4,0. Обработка данных производится в 16-битном формате.

Значения фокусного расстояния и дистанции фокусировки параметризуются 32-битным и 16-битным целыми числами соответственно. Меньшее значение параметра фокусного расстояния z соответствует большему фокусному расстоянию,

то есть более узкому полю зрения. Большее значение параметра дистанции фокусировки f соответствует более близкой точке фокусирования.

Объектив позволяет установить дистанции фокусировки, не применяющиеся на практике, то есть фокусироваться дальше, чем фокус на бесконечность, и ближе, чем на стекле самого объектива. На рисунке 1 штриховкой показаны области на плоскости фокусное расстояние — дистанция фокусировки, которые в связи с этим не представляют интереса при практическом использовании. Сплошной линией показаны соотношения параметров, при которых наблюдаемый эффект Нарцисса является наиболее резким, то есть линия резкой картины эффекта Нарцисса. Как видно, при некоторых значениях фокусного расстояния он присутствует и при фокусировании на бесконечность, что зачастую может служить режимом работы оптической системы по умолчанию.

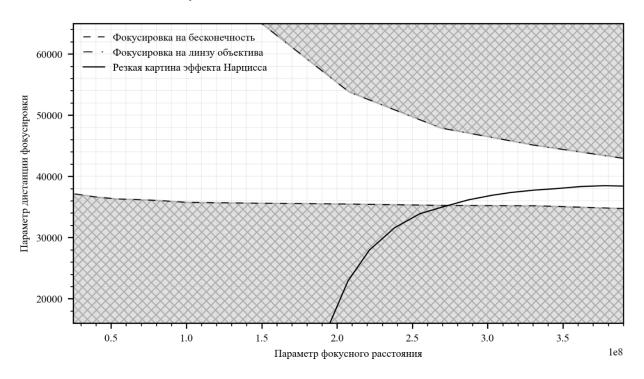


Рисунок 1. Линия резкой картины эффекта Нарцисса на плоскости параметров фокусного расстояния и дистанции фокусировки

Рассмотрим часть построенной сетки опорных кадров.

Точки, лежащие на линии резкой картины эффекта Нарцисса: $(z_0, f_0) = (254909000, 33880), (z_1, f_1) = (270371000, 35010), (z_2, f_2) = (287122000, 36150).$

Матрицы перехода:

$$M_{z_0,z_1} = \begin{pmatrix} 0.765 & 0 & 71 \\ 0 & 0.765 & 55 \end{pmatrix}, M_{z_1,z_2} = \begin{pmatrix} 0.798 & 0 & 57 \\ 0 & 0.798 & 53 \end{pmatrix}. \tag{9}$$

Размеры ядер для Гауссова размытия для получения приближения кадра текущей резкости из более резкого представлены в таблице 1. В таблицу не включены узлы сетки со смещением дистанции фокусировки, равным нулю.

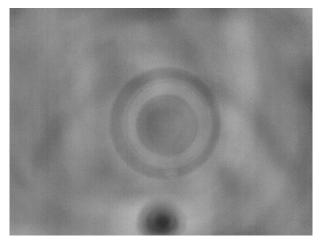
Параметр фокусного	Параметр смещения дистанции фокусировки		
расстояния	-1000	1000	2000

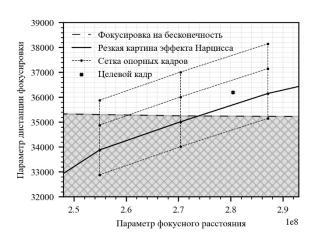
59

87

95

Таблица 1. Размеры ядер для Гауссова размытия для узлов сетки


254909000


270371000

287122000

На рисунке 2 представлен кадр, полученный при съёмке модели абсолютно чёрного тела при температуре 25° С при параметрах $z=280421600,\ f=36200,$ смещение относительно линии резкой картины Нарцисса d=506. К кадру применена двухточечная коррекция неоднородностей отклика матрицы. Исходя из условий съёмки, кадр должен иметь равномерную интенсивность, однако для демонстрации эффекта Нарцисса к нему было применено локальное контрастирование, из-за которого хорошо заметны незначительные неоднородности.

Рисунок 3 показывает точки, соответствующие параметрам опорных кадров сетки и целевого кадра, представленного на рисунке 2, расположенные на плоскости значений параметров z, f.

49

55

53

9

Рисунок 2. Снимок модели абсолютно чёрного тела, подлежащий коррекции эффекта Нарцисса

Рисунок 3. Параметры для сетки опорных кадров и целевого кадра

Рисунки 4 и 5 показывают базовые компенсирующие кадры, на основании которых получено приближение: $(z_1, f_1) = (270371000, 35010), \quad (z_2, f_2) = (287122000, 36150).$

Результаты применения этих кадров в исходном виде в качестве компенсирующих показаны на рисунках 6, 7. Видно, что даже небольшое отклонение в форме картины эффекта Нарцисса приводит к значительным искажениям исходного изображения.

Получим компенсирующий кадр, используя описанный подход. Относительное положение z между z_1, z_2 : $r_z = 0.6$. Матрицы преобразования

$$M_{z_1,z} = \begin{pmatrix} 0.928 & 0 & 22 \\ 0 & 0.928 & 17 \end{pmatrix}, M_{z_2,z} = \begin{pmatrix} 1.051 & 0 & -17 \\ 0 & 1.051 & -13 \end{pmatrix}, \tag{10}$$

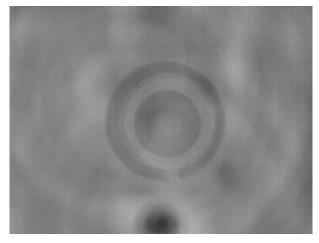


Рисунок 4. Базовый корректирующий кадр при $z_1 = 270371000$

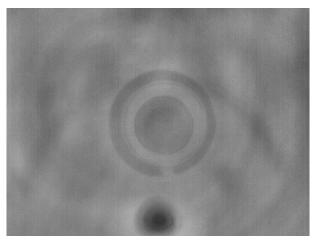


Рисунок 5. Базовый корректирующий кадр при $z_2 = 287122000$

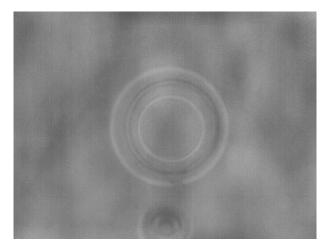


Рисунок 6. Использование корректирующего кадра $z_1=270371000$ для коррекции сцены с z=280421600

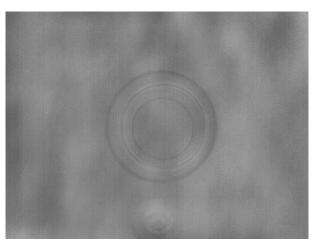
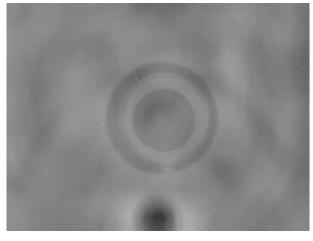



Рисунок 7. Использование корректирующего кадра $z_2=287122000$ для коррекции сцены с z=280421600

Для Гауссова размытия используется ядро размера 5.

На рисунке 8 представлен компенсирующий кадр, вычитание которого из снимка сцены устранит эффект Нарцисса. Так как в данном случае сцена представляет собой множество пикселей одинаковой интенсивности, то компенсирующий кадр по сути является приближением самой сцены, представленной на рисунке 2.

Результат коррекции (с применённым локальным контрастированием) представлен на рисунке 9. На изображении видно, что расположенное в нижней части кадра тёмное пятно скомпенсировано хуже, так как матрицы преобразования были подобраны для основной части картины Нарцисса. Однако, учитывая однородность сцены и применение локального контрастирования, то есть наиболее сложных условий, можно говорить о том, что предложенный алгоритм является эффективным.

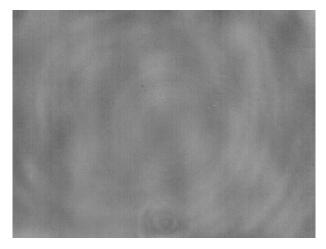


Рисунок 8. Приближение компенсирующего кадра, полученного из двух базовых кадров аналогичной резкости

Рисунок 9. Результат коррекции, полученный с использованием приближения компенсирующего кадра

Заключение

В данной работе предложен подход к компенсации эффекта Нарцисса для объектива с переменным фокусным расстоянием при различных дистанциях фокусировки.

Предложенный метод требует некоторого объёма предварительной работы для съёмки базовых компенсирующих кадров и вычисления параметров преобразований для получения из каждого из них приближения для некоторого количества других. Однако полученные результаты позволяют компенсировать эффект Нарцисса для произвольных значений фокусного расстояния и дистанции фокусировки.

Благодарности

Авторы выражают глубокую признательность коллегам из сектора прикладного программного обеспечения за плодотворные дискуссии и ценные замечания.

Список литературы

- 1. Lau A. S. The Narcissus Effect In Infrared Optical Scanning Systems // Stray Light Problems in Optical Systems; Proceedings of the Seminar, Reston, Va., April 18-21, 1977 / Edited by J.D. Lytle, H. Morrow. SPIE Proceedings, Vol. 107. Bellingham, WA: Society of Photo-Optical Instrumentation Engineers, 1977. P. 57. DOI: 10.1117/12.964596
- 2. Niu Jinxing, Zhou Renkui, Liu Zhaohui, Yang Jianguo, Cai Zhan'en, Lin Futiao. Analysis of Stray Light Caused by Thermal Radiation of Infrared Detection System // Acta Optica Sinica. 2010. 30 (8). 2267-2271. DOI: 10.3788/aos20103008.2267
- 3. Mei Chaoyang, Cui Qingfeng, Hu Yang, Sun Lin, Gao Xudohg, Zheng Hanqin. Correction Method of Narcissus Effect of Cooled Infrared System Based on Differential Threshold // Acta Photonica Sinica. 2021. 50 (11). 1111003. DOI: 10.3788/gzxb20215011.1111003
- 4. Lei Li, Xing Zhong, Zheng Qu, Guangqing Xia, Yuanhang Wang, Chaoli Zeng. Spherical aberration-based compensation method for Narcissus // Applied Optics. 2023. 62 (34). 9082-9088. DOI: 10.1364/AO.502095
- 5. Cangzhou Shi, Junming Hao. A real-time Narcissus correction algorithm based on Gaussian mixture models // Infrared Physics & Technology. 2021. 117. 103855. DOI: 10.1016/j.infrared.2021.103855

- 6. Yang Cao, Wei-qi Jin, Chong-liang Liu, Xiu Liu, Fu-wen Li, Wei-li Chen. Research on scene-based Narcissus correction algorithm in infrared focal plane arrays // International Conference on Optical Instruments and Technology: Optoelectronic Imaging and Process Technology (SPIE). 2009. 7513. 75131S. DOI: 10.1117/12.837890
- 7. Соболев П. С., Черняк Б. В., Петров М. Н. Коррекция влияния температуры окружающей среды на оптическую систему тепловизионного канала // Вестник НовГУ. 2019. 2 (114). 27-30. DOI: 10.34680/2076-8052.2019.2(114).27-30
- 8. Perry D. L., Dereniak E. L. Linear theory of nonuniformity correction in infrared staring sensors // Optical Engineering. 1993. 32 (8). 1854-1859. DOI: 10.1117/12.145601
- 9. Zhang Bob, Hong Y.-F, Shi G.-H. Application of non-uniformity correction to stray radiation suppression of infrared optical system // Optics and Precision Engineering (Chinese). 2008. 16 (12). 2421-2428.

References

- 1. Lau A. S. The Narcissus Effect In Infrared Optical Scanning Systems // Stray Light Problems in Optical Systems; Proceedings of the Seminar, Reston, Va., April 18-21, 1977 / Edited by J.D. Lytle, H. Morrow. SPIE Proceedings, Vol. 107. Bellingham, WA: Society of Photo-Optical Instrumentation Engineers, 1977. P. 57. DOI: 10.1117/12.964596
- 2. Niu Jinxing, Zhou Renkui, Liu Zhaohui, Yang Jianguo, Cai Zhan'en, Lin Futiao. Analysis of Stray Light Caused by Thermal Radiation of Infrared Detection System // Acta Optica Sinica. 2010. 30 (8). 2267-2271. DOI: 10.3788/aos20103008.2267
- 3. Mei Chaoyang, Cui Qingfeng, Hu Yang, Sun Lin, Gao Xudohg, Zheng Hanqin. Correction Method of Narcissus Effect of Cooled Infrared System Based on Differential Threshold // Acta Photonica Sinica. 2021. 50 (11). 1111003. DOI: 10.3788/gzxb20215011.1111003
- 4. Lei Li, Xing Zhong, Zheng Qu, Guangqing Xia, Yuanhang Wang, Chaoli Zeng. Spherical aberration-based compensation method for Narcissus // Applied Optics. 2023. 62 (34). 9082-9088. DOI: 10.1364/AO.502095
- 5. Cangzhou Shi, Junming Hao. A real-time Narcissus correction algorithm based on Gaussian mixture models // Infrared Physics & Technology. 2021. 117. 103855. DOI: 10.1016/j.infrared.2021.103855
- 6. Yang Cao, Wei-qi Jin, Chong-liang Liu, Xiu Liu, Fu-wen Li, Wei-li Chen. Research on scene-based Narcissus correction algorithm in infrared focal plane arrays // International Conference on Optical Instruments and Technology: Optoelectronic Imaging and Process Technology (SPIE). 2009. 7513. 75131S. DOI: 10.1117/12.837890
- 7. Sobolev P. S., Chernyak B. V., Petrov M. N. Korrektsiya vliyaniya temperatury okruzhayushchey sredy na opticheskuyu sistemu teplovizionnogo kanala [Correction of the influence of ambient temperature on the optical system of the thermal imaging channel] // Vestnik NovSU. 2019. 2 (114). 27-30. DOI: 10.34680/2076-8052.2019.2(114).27-30
- 8. Perry D. L., Dereniak E. L. Linear theory of nonuniformity correction in infrared staring sensors // Optical Engineering. 1993. 32 (8). 1854-1859. DOI: 10.1117/12.145601
- 9. Zhang Bob, Hong Y.-F, Shi G.-H. Application of non-uniformity correction to stray radiation suppression of infrared optical system // Optics and Precision Engineering (Chinese). 2008. 16 (12). 2421-2428.

Информация об авторах

Гарбарь Сергей Владиславович – ведущий инженер, АО «ЭЛСИ» (Великий Новгород, Россия), ORCID: 0000-0002-5205-5252, <u>Sergey.Garbar@novsu.ru</u>

Ласков Илья Анатольевич – инженер, АО «ЭЛСИ» (Великий Новгород, Россия), ORCID: 0009-0001-7731-4900, laskovi.workmail@gmail.com